Which radical expression is larger?

Dec 2016
295
161
Earth
\(\displaystyle \sqrt[22]{10} \ \ \ or \ \ \ \sqrt[30]{30}\)

The type is relatively small. That is the equivalent of 10^(1/22) versus 30^(1/30).



You may use a pencil and paper. You may not use a calculator, computer, or logarithmic tables.
 
Last edited:

ChipB

MHF Helper
Jun 2014
305
124
NJ
Hint: try raising both expressions to the 30th power and see which is larger.
 
Dec 2016
295
161
Earth
Hint: try raising both expressions to the 30th power and see which is larger.
If you do that, then you will have 10^(15/11) versus 30. What would be your next
step? I have it as a challenge problem, which means I'm challenging others.

My strategy involves getting rid of fractional exponents for both sides at the outset.
 
  • Like
Reactions: 1 person
Dec 2014
130
101
USA
$10^{1/22} < 30^{1/30}$

$10^{15/11} \ne 3 \cdot 10$

$10^{15} \ne 3^{11} \cdot 10^{11}$

$10^4 \ne 3^3 \cdot 9^4$

$\dfrac{10^4}{9^4} \ne 27$

$\dfrac{10000}{(80+1)^2} \ne 27$

$\dfrac{10000}{6400+160+1} < 2 < 27$
 
  • Like
Reactions: 1 person
Dec 2013
2,000
757
Colombia
\(\displaystyle \sqrt[22]{10} \ \ \ or \ \ \ \sqrt[30]{30}\)

The type is relatively small. That is the equivalent of 10^(1/22) versus 30^(1/30).



You may use a pencil and paper. You may not use a calculator, computer, or logarithmic tables.
\begin{align} \sqrt[22]{10} &\leftrightarrow \sqrt[30]{30} \\ \frac1{22}\log{10} &\leftrightarrow \frac1{30}\log{30} \\ 30\log{10} &\leftrightarrow 22(\log{10} + \log{3}) \\ 8\log{10} &\leftrightarrow 22\log{3} \\ \frac{\log{10}}{\log{3}} &\leftrightarrow \frac{22}{8} \\ 2 = \frac{2\log{3}}{\log{3}} = \frac{\log{9}}{\log{3}} \approx \frac{\log{10}}{\log{3}} &\lt \frac{22}8 \approx 3 \end{align}
 
Last edited:
Nov 2018
32
4
USA
\(\displaystyle \frac{\sqrt[30]{30}}{\sqrt[22]{10}} = \frac{\sqrt[30]{10}\sqrt[30]{3}}{\sqrt[22]{10}} = \frac{\sqrt[150]{243}}{\sqrt[165]{100}} > 1 \longrightarrow \sqrt[30]{30} > \sqrt[22]{10}\)
 
Last edited:
Dec 2016
295
161
Earth
\(\displaystyle \frac{\sqrt[30]{10}\sqrt[30]{3}}{\sqrt[22]{10}} = \frac{\sqrt[150]{243}}{\sqrt[165]{100}} \)
It looks like you're missing a step or two between these two.

\(\displaystyle \frac{\sqrt[150]{243}}{\sqrt[165]{100}} > 1 \)
No, I don't see how you have justified this part of it.
 
Last edited:
Dec 2016
295
161
Earth
\begin{align} \sqrt[22]{10} &\leftrightarrow \sqrt[30]{30} \\ \frac1{22}\log{10} &\leftrightarrow \frac1{30}\log{30} \\ 30\log{10} &\leftrightarrow 22(\log{10} + \log{3}) \\ 8\log{10} &\leftrightarrow 22\log{3} \\ \frac{\log{10}}{\log{3}} &\leftrightarrow \frac{22}{8} \\ 2 = \frac{2\log{3}}{\log{3}} = \frac{\log{9}}{\log{3}} \approx \frac{\log{10}}{\log{3}} &\lt \frac{22}8 \approx 3 \end{align}
Archie, (in effect) you supported that 2 < \(\displaystyle \ \dfrac{log(10)}{log(3)}, \ \ \) and we know that 2 = 16/8 < 22/8.

But I do not see support as to where you show the relative size of \(\displaystyle \ \dfrac{log(10)}{log(3)} \ \) versus 22/8.
 
Last edited:
Nov 2018
32
4
USA
\(\displaystyle \frac{\sqrt[30]{10}}{\sqrt[22]{10}} = 10^{\frac{1}{30}-\frac{1}{22}} = 10^{-\frac{2}{165}} = 100^{-\frac{1}{165}}\)

\(\displaystyle \sqrt[30]{3} = \left(243^{\frac{1}{5}}\right)^{\frac{1}{30}} = 243^{\frac{1}{150}}\)

The first inequality justified by the shallower root of a larger number in the numerator compared with the denominator (with both radicands greater than 1).
 
Last edited:
  • Like
Reactions: 1 person