# test

#### thatloserrsaid

$$\displaystyle \left(\begin{array}{cc}n\\n_{1},n_{2}, ..., n_{k}\end{array}\right) = \frac{n!}{n_{1}!n_{2}!...n_{k}!}$$

$$\displaystyle P(X=k) = \frac{1}{n}$$

$$\displaystyle E(X) = \frac{n+1}{2}$$
$$\displaystyle V(X) = \frac{n^{2}-1}{12}$$

$$\displaystyle = \frac{P(A_{i}) \times P(E \mid A_{i})}{P(A_{1}) \times P(E \mid A_{1}) + P(A_{2}) \times P(E \mid A_{2}) + ... + P(A_{n}) \times P(E \mid A_{n})}$$

Last edited:

#### undefined

MHF Hall of Honor
$$\displaystyle \left(\begin{array}{cc}n\\n_{1},n_{2}, ..., n_{k}\end{array}\right) = \frac{n!}{n_{1}!n_{2}!...n_{k}!}$$

$$\displaystyle P(X=k) = \frac{1}{n}$$

$$\displaystyle E(X) = \frac{n+1}{2}$$
$$\displaystyle V(X) = \frac{n^{2}-1}{12}$$

$$\displaystyle = \frac{P(A_{i}) \times P(E \mid A_{i})}{P(A_{1}) \times P(E \mid A_{1}) + P(A_{2}) \times P(E \mid A_{2}) + ... + P(A_{n}) \times P(E \mid A_{n})}$$
Depending on your preferences you might also like to use \cdot so that $$\displaystyle P(A_{i}) \times P(E \mid A_{i})$$ becomes $$\displaystyle P(A_{i}) \cdot P(E \mid A_{i})$$.