What is the norm \(\displaystyle \|\cdot\|_{C^m(\Omega)}\) in the following:

For \(\displaystyle 0\le m < k - \frac{n}{p}\)

\(\displaystyle

W^{k,p}_0(\Omega) \subset C^m(\bar{\Omega}),

\)

i.e., \(\displaystyle \|u\|_{C^m(\Omega)} \le c\|u\|_{W^{k,p}_0}.\)