In Simple Linear Regression model

i have the hat matrix

\(\displaystyle

h_{ij}=\dfrac{1}{n}+\dfrac{(x_i-\bar{x})(x_j-\bar{x})}{S_{xx}}

\)

\(\displaystyle

h_{ii}=\dfrac{1}{n}+\dfrac{(x_i-\bar{x})^2}{S_{xx}}

\)

what does the behavior of quantities as\(\displaystyle x_i \)moves farther from\(\displaystyle \bar{X}\)?

i have the hat matrix

\(\displaystyle

h_{ij}=\dfrac{1}{n}+\dfrac{(x_i-\bar{x})(x_j-\bar{x})}{S_{xx}}

\)

\(\displaystyle

h_{ii}=\dfrac{1}{n}+\dfrac{(x_i-\bar{x})^2}{S_{xx}}

\)

what does the behavior of quantities as\(\displaystyle x_i \)moves farther from\(\displaystyle \bar{X}\)?

Last edited: