# Riemann Zeta Identity

#### [email protected]

MHF Hall of Honor
For $$\displaystyle \Re(s)>1$$ show $$\displaystyle \sum_{n=1}^\infty \frac{\tau\left(n^2\right)}{n^s} = \frac{\zeta^3(s)}{\zeta(2s)}$$ where $$\displaystyle \tau(m)$$ is the number of divisors of $$\displaystyle m$$.

#### simplependulum

MHF Hall of Honor
If $$\displaystyle m = p_1^{a_1}p_2^{a_2}p_2^{a_3}...$$ then $$\displaystyle \tau(m) = (1 + a_1)(1 + a_2 )( 1 + a_3) ...$$

and $$\displaystyle \tau(m^2) = (1 + 2a_1 )( 1 + 2a_2 )( 1 + 2a_3) ...$$

and the sum $$\displaystyle \sum_{n=1}^{\infty} \frac{\tau(n^2)}{n^s}$$

$$\displaystyle = \prod_{p_i \in \mathbb{P} }\left( \sum_{k=0}^{\infty} \frac{2k+1}{p_i^{ks}} \right)$$

Since

$$\displaystyle \frac{1}{1-x} = 1 + x + x^2 + ....$$

By taking derivative ,

$$\displaystyle \frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + ...$$

Then $$\displaystyle \sum_{k=0}^{\infty} (2k+1)x^k = \frac{2x}{(1-x)^2} + \frac{1}{1-x} = \frac{2x+1-x}{(1-x)^2} = \frac{1 + x}{(1-x)^2}$$

Let $$\displaystyle x = \frac{1}{p_i^s }$$

we have $$\displaystyle \sum_{k=0}^{\infty} \frac{2k+1}{p_i^{ks}} = \frac{1 + 1/p_i^s }{ \left( 1 - \frac{1}{p_i^s} \right)^2 }$$

$$\displaystyle = \frac{1 - 1/p_i^{2s} }{ \left( 1 - \frac{1}{p_i^s} \right)^3 }$$

Therefore ,

$$\displaystyle \sum_{n=1}^{\infty} \frac{\tau(n^2)}{n^s} = \prod_{p_i \in \mathbb{P} } \frac{1 - 1/p_i^{2s} }{ \left( 1 - \frac{1}{p_i^s} \right)^3 }$$ $$\displaystyle = \frac{ \zeta^3(s)}{\zeta(2s)}$$ since

$$\displaystyle \frac{1}{ \zeta(z)} = \prod_{p_i \in \mathbb{P} } (1- \frac{1}{p_i^z} )$$

* $$\displaystyle \mathbb{P}$$ denotes the set of all prime numbers .

[email protected]