# Limit Calculation

#### Wee G

Hi guys, I need a little help with this limit here:

lim x->infinity of: sqrt(x^2 + x) - sqrt(x^2 - 2x)

cheers !

#### HallsofIvy

MHF Helper
Hi guys, I need a little help with this limit here:

lim x->infinity of: sqrt(x^2 + x) - sqrt(x^2 - 2x)

cheers !
"Rationalize the numerator"- that is, multiply both numerator and denominator by $$\displaystyle \sqrt{x^2+ x}+ \sqrt{x^2- 2x}$$ to get $$\displaystyle \frac{(\sqrt{x^2+ x}- \sqrt{x^2- 2x})(\sqrt{x^2+ x}+ \sqrt{x^2- 2x})}{\sqrt{x^2+ x}+ \sqrt{x^2- 2x}}$$$$\displaystyle = \frac{x^2+ x- x^2+ 2x}{\sqrt{x^2+x}+ \sqrt{x^2- 2x}}= \frac{3x}{\sqrt{x^2+ x}+ \sqrt{x^2- 2x}}$$

#### Wee G

done it, cheers !
(Clapping)

#### simplependulum

MHF Hall of Honor
Or we can solve it by mean value theorem ,

Let $$\displaystyle f(x) = \sqrt{t}$$
we have

$$\displaystyle \frac{ \sqrt{x^2 + x } - \sqrt{x^2 - 2x}}{x^2 + x - x^2 + 2x} = \frac{1}{2\sqrt{c}}$$ where $$\displaystyle x^2 - 2x < c < x^2 + x$$

Take reciporcal and square root ,

$$\displaystyle \frac{1}{\sqrt{x^2 - 2x}} > \frac{1}{\sqrt{c}} > \frac{1}{\sqrt{x^2 +x }}$$

$$\displaystyle \frac{1}{\sqrt{x^2 - 2x}} > 2 \frac{ \sqrt{x^2 + x } - \sqrt{x^2 - 2x}}{3x}> \frac{1}{\sqrt{x^2 +x }}$$

$$\displaystyle \frac{3}{2} \frac{x}{\sqrt{x^2 - 2x}} > \sqrt{x^2 + x } - \sqrt{x^2 - 2x} > \frac{3}{2} \frac{x}{\sqrt{x^2 +x }}$$

$$\displaystyle \lim_{x\to\infty} \frac{3}{2} \frac{x}{\sqrt{x^2 - 2x}}> \lim_{x\to\infty} \sqrt{x^2 + x } - \sqrt{x^2 - 2x} > \lim_{x\to\infty} \frac{3}{2} \frac{x}{\sqrt{x^2 +x }}$$

$$\displaystyle \frac{3}{2} > \lim_{x\to\infty} \sqrt{x^2 + x } - \sqrt{x^2 - 2x} >\frac{3}{2}$$

$$\displaystyle L = \frac{3}{2}$$

Similar Math Discussions Math Forum Date
Calculus
Calculus
Pre-Calculus
Calculus