N nightrider456 Jan 2010 43 0 Jun 8, 2010 #1 How do I proove this, any help would be appreciated \(\displaystyle \frac{Cosx+Cotx}{1+Sinx} = Cotx \)

How do I proove this, any help would be appreciated \(\displaystyle \frac{Cosx+Cotx}{1+Sinx} = Cotx \)

skeeter MHF Helper Jun 2008 16,217 6,765 North Texas Jun 8, 2010 #2 nightrider456 said: How do I proove this, any help would be appreciated \(\displaystyle \frac{Cosx+Cotx}{1+Sinx} = Cotx \) Click to expand... \(\displaystyle \frac{\sin{x}}{\sin{x}} \cdot \frac{\cos{x} + \cot{x}}{1+\sin{x}} =\) \(\displaystyle \frac{\sin{x}\cos{x} + \cos{x}}{\sin{x}(1+\sin{x})} =\) \(\displaystyle \frac{\cos{x}(\sin{x}+1)}{\sin{x}(1+\sin{x})} =\) \(\displaystyle \frac{\cos{x}}{\sin{x}} = \cot{x} \)

nightrider456 said: How do I proove this, any help would be appreciated \(\displaystyle \frac{Cosx+Cotx}{1+Sinx} = Cotx \) Click to expand... \(\displaystyle \frac{\sin{x}}{\sin{x}} \cdot \frac{\cos{x} + \cot{x}}{1+\sin{x}} =\) \(\displaystyle \frac{\sin{x}\cos{x} + \cos{x}}{\sin{x}(1+\sin{x})} =\) \(\displaystyle \frac{\cos{x}(\sin{x}+1)}{\sin{x}(1+\sin{x})} =\) \(\displaystyle \frac{\cos{x}}{\sin{x}} = \cot{x} \)