- Sep 2013

- 4

- 0

- Horten

Hey people! I got a problem here I'm stuck on:

A car is driving at night along a level, curved road. It starts in the origin, the equation of the road is [FONT=MathJax_Math]

a) What is the position of the car when its headlight illuminates the signpost? Do you have any implicit physical assumptions in your solution?

b) What is the shortest distance between the signpost and the car?

c) Let [FONT=MathJax_Main]d[FONT=MathJax_Math]

I got some ideas for how I am to solve it, but I do not know where to begin. Please help me

xXxPapaLouxXx

A car is driving at night along a level, curved road. It starts in the origin, the equation of the road is [FONT=MathJax_Math]

*y*[FONT=MathJax_Main]= [/FONT][FONT=MathJax_Math]*x*[/FONT][/FONT], and the car's x-coordinate is an increasing function of time. There is a signpost located at [FONT=MathJax_Main]([FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Main]3.75[/FONT][FONT=MathJax_Main])[/FONT][/FONT].^{2}a) What is the position of the car when its headlight illuminates the signpost? Do you have any implicit physical assumptions in your solution?

b) What is the shortest distance between the signpost and the car?

c) Let [FONT=MathJax_Main]d[FONT=MathJax_Math]

*x/*[/FONT][FONT=MathJax_Main]d[/FONT][FONT=MathJax_Math]*t*[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]*v*[/FONT][/FONT] and [FONT=MathJax_Main]d[FONT=MathJax_Math]_{x}*y/*[/FONT][FONT=MathJax_Main]d[/FONT][FONT=MathJax_Math]*t*[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math]*v*[/FONT][FONT=MathJax_Main].[/FONT][/FONT] The car's velocity is then[FONT=MathJax_Main][v_{y}_{x}[/FONT][FONT=MathJax_Main],v[/FONT][FONT=MathJax_Math]*[/FONT][FONT=MathJax_Main]][/FONT]. How are [FONT=MathJax_Math]*_{y}*v*[/FONT] and [FONT=MathJax_Math]_{x}*v*[/FONT] related?_{y}I got some ideas for how I am to solve it, but I do not know where to begin. Please help me

xXxPapaLouxXx

Last edited: