- Sep 2011

- 392

- 7

- Mumbai (Bombay),Maharashtra,India

Hello,

$\frac{dy}{dx}=\frac{x+1}{y(y+2)}$

Solution: $(y^2+2y)dy=(x+1)dx$

Integrating both the sides, we get

$\frac{(y^3+3y^2)}{3}=\frac{(x^2+2x)}{2}+c$

Now here i am stuck. When i put this differential equation in wolfram alpha it gave me very lengthy solution.Now what should i do?

$\frac{dy}{dx}=\frac{x+1}{y(y+2)}$

Solution: $(y^2+2y)dy=(x+1)dx$

Integrating both the sides, we get

$\frac{(y^3+3y^2)}{3}=\frac{(x^2+2x)}{2}+c$

Now here i am stuck. When i put this differential equation in wolfram alpha it gave me very lengthy solution.Now what should i do?

Last edited: