integral from 1 to i [conjugate(z)]^4 dz along |z|=1, the first qadrant.
if z=exp(itheta) then conjugate(z)=exp(-itheta) so ^4 we get
[conjugate(z)]^4=exp(- 4itheta)
so integrai from 0 to pi/2 of exp(- 4itheta) dtheta =1/4sin(4theta)| 0 to pi/2 +(1/4) i cos(4theta)| 0 to pi/2 = 0
so is the answer 0???
if z=exp(itheta) then conjugate(z)=exp(-itheta) so ^4 we get
[conjugate(z)]^4=exp(- 4itheta)
so integrai from 0 to pi/2 of exp(- 4itheta) dtheta =1/4sin(4theta)| 0 to pi/2 +(1/4) i cos(4theta)| 0 to pi/2 = 0
so is the answer 0???