- Parametrise the curve \(\displaystyle \mathcal{K}\).
- Find the Frenet-Serret basis of the curve \(\displaystyle \mathcal{K}\) at point \(\displaystyle A(2, 1, 3)\).
- Find the \(\displaystyle \int_{\mathcal{K}}\vec{F}\mathrm{d}\vec{r}\) of the vector field \(\displaystyle F(x, y, z) = (z, x - 1, -2y)\) along the curve \(\displaystyle \mathcal{K}\). [FONT=MathJax_Size2]∫[/FONT]