\(\displaystyle f(x)=x-\frac{3}{2}x^2+\frac{11}{6}x^3-\frac{50}{24}x^4+\frac{274}{120}x^5+...\)

This is Taylor series of function \(\displaystyle f(x)=\frac{ln(1+x)}{1+x}\)

\(\displaystyle f(x)=x-\frac{3}{2}x^2+\frac{11}{6}x^3-\frac{50}{24}x^4+\frac{274}{120}x^5+...=\Sigma^\infty_{n=0}(-1)^{n+1}a_n x^n\)

What is form of \(\displaystyle a_n\)?

Thank you very much!

This is Taylor series of function \(\displaystyle f(x)=\frac{ln(1+x)}{1+x}\)

**My question is:**\(\displaystyle f(x)=x-\frac{3}{2}x^2+\frac{11}{6}x^3-\frac{50}{24}x^4+\frac{274}{120}x^5+...=\Sigma^\infty_{n=0}(-1)^{n+1}a_n x^n\)

What is form of \(\displaystyle a_n\)?

Thank you very much!

Last edited: