1. ## Trig. Problem

1+tan^2A/1+cot^2A=(1-tanA/1-cotA)^2

Thanks

2. It's not an equation, it's an identity.

The left side member:

$\displaystyle \frac{1+\tan^2A}{1+\cot^2A}=\frac{1+\tan^2A}{1+\fr ac{1}{\tan^2A}}=\frac{1+\tan^2A}{\frac{1+\tan^2A}{ \tan^2A}}=\tan^2A$

$\displaystyle \left(\frac{1+\tan A}{1+\cot A}\right)^2=\left(\frac{1+\tan A}{1+\frac{1}{\tan A}}\right)^2=$

$\displaystyle =\left(\frac{1+\tan A}{\frac{1+\tan A}{\tan A}}\right)^2=\tan^2A$

Then the identity holds.

3. Hello, raj01b!

Another approach . . .

Prove: .$\displaystyle \frac{1+\tan^2\!A}{1+\cot^2\!A} \;=\;\left(\frac{1+\tan A}{1+\cot A}\right)^2$
The left side is: .$\displaystyle \frac{1 + \tan^2\!A}{1 + \cos^2\!A} \;=\;\frac{\sec^2\!A}{\csc^2\!A} \;=\; \frac{\dfrac{1}{\cos^2\!A}}{\dfrac{1}{\sin^2\!A}} \;=\;\frac{\sin^2\!A}{\cos^2\!A} \;=\;\tan^2\!A$

Multiply by $\displaystyle \frac{(1+\tan A)^2}{(1 +\tan A)^2}\!:\quad\tan^2\!A\cdot\frac{(1+\tan A)^2}{(1+\tan A)^2} \;=\;\left[\frac{\tan A(1 + \tan A)}{1 + \tan A}\right]^2$

Divide top and bottom by $\displaystyle \tan A\!:\quad\left(\frac{1+\tan A}{\frac{1}{\tan A} + 1}\right)^2 \;=\;\left(\frac{1+\tan A}{1 + \cot A}\right)^2$

4. ## trig problem

Thanks for the help but equation I posted earlier was not the equation I was stuck with, actually following is the equation I want to solve-

1+tan^2 A/1+cot^2 A= (1-tan A/1-cot A)^2
sorry for the trouble, any further help will be appreciated.

Thanks

5. Hello raj01b
Originally Posted by raj01b
Thanks for the help but equation I posted earlier was not the equation I was stuck with, actually following is the equation I want to solve-

1+tan^2 A/1+cot^2 A= (1-tan A/1-cot A)^2
sorry for the trouble, any further help will be appreciated.

Thanks
You've already seen how $\displaystyle \frac{1+\tan^2A}{1+\cot^2A}= \tan^2A$

Well if we multiply $\displaystyle \Big(\frac{1-\tan A}{1-\cot A}\Big)^2$ 'top-and-bottom' by $\displaystyle \tan^2A$, we get:

$\displaystyle \Big(\frac{1-\tan A}{1-\cot A}\Big)^2=\Big(\frac{1-\tan A}{1-\cot A}\Big)^2\times \frac{\tan^2A}{\tan^2A}$

$\displaystyle = \frac{\tan^2A(1-\tan A)^2}{(\tan A - \cot A\tan A)^2}$

$\displaystyle = \frac{\tan^2A(1-\tan A)^2}{(\tan A - 1)^2}$

$\displaystyle = \tan^2A$, since $\displaystyle (1-\tan A)^2 = (\tan A -1)^2$

So $\displaystyle \frac{1+\tan^2A}{1+\cot^2A}=\Big(\frac{1-\tan A}{1-\cot A}\Big)^2$

6. ## trig problem

Thanks Soroban for the quick reply. I was actually confused that (1-tan A)^2 & (tan A-1)^2 are the same thing.

Thank you very much once again.

,

,

,

,

,

,

,

,

,

,

# (1 tan2A/1 cot2A) =(1-tanA/1-cotA)

Click on a term to search for related topics.