Results 1 to 3 of 3

Math Help - trigo 6

  1. #1
    Senior Member
    Joined
    Jan 2009
    Posts
    381

    trigo 6

    A rectangular lamina ABCD has sides AB=CD=2a and BC=AD=a . The midpoint of CD is M and the midpoint of BM is N . THe lamina is folded along BM such that the planes BMC and BMDA are perpendicular . For this folded lamina , find in terms of surds if necessary .

    (a) AN
    (b) AC
    (c) angle ACB

    This is what i did :

    (a) BM = a\sqrt{2} , BN =\frac{a\sqrt{2}}{2} , AB=2a

    AM=AB=2a , cos angle MBC = \frac{\sqrt{2}}{2} \Rightarrow
    angle MBC=45 degree , therefore ABN= 45 degree

     <br />
AN^2=(2a)^2+(\frac{a\sqrt{2}}{2})^2-2(2a)(a\sqrt{2}{2})cos 45<br />

     <br />
AN=\frac{\sqrt{10}}{2}a<br />

    (b) AMC=90 degree

    MC=a , AM = 2a

    AC=\sqrt{(2a)^2+a^2}=a\sqrt{5}

    (c) ABC=90

    tan angle ACB = 2a/a

    ACB=arctan 2

    = 63 degree 26 mins


    CAn somepne pls check my working . Thanks a lot !!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor Amer's Avatar
    Joined
    May 2009
    From
    Jordan
    Posts
    1,093
    Quote Originally Posted by thereddevils View Post
    A rectangular lamina ABCD has sides AB=CD=2a and BC=AD=a . The midpoint of CD is M and the midpoint of BM is N . THe lamina is folded along BM such that the planes BMC and BMDA are perpendicular . For this folded lamina , find in terms of surds if necessary .

    (a) AN
    (b) AC
    (c) angle ACB

    This is what i did :

    (a) BM = a\sqrt{2} , BN =\frac{a\sqrt{2}}{2} , AB=2a

    AM=AB=2a , cos angle MBC = \frac{\sqrt{2}}{2} \Rightarrow
    angle MBC=45 degree , therefore ABN= 45 degree

     <br />
AN^2=(2a)^2+(\frac{a\sqrt{2}}{2})^2-2(2a)(a\sqrt{2}{2})cos 45<br />


     <br />
AN=\frac{\sqrt{10}}{2}a<br />

    (b) AMC=90 degree

    MC=a , AM = 2a

    AC=\sqrt{(2a)^2+a^2}=a\sqrt{5}

    (c) ABC=90

    tan angle ACB = 2a/a

    ACB=arctan 2

    = 63 degree 26 mins


    CAn somepne pls check my working . Thanks a lot !!

     <br />
AN^2=(2a)^2+(\frac{a\sqrt{2}}{2})^2-2(2a)(a\sqrt{2}{2})cos 45<br />
    should be

    AN^2 = (2a)^2 + \left(\frac{a\sqrt{2}}{2}\right)^2 - 2(2a)\left(\frac{a\sqrt{2}}{2}\right)\cos 45^o


    AN^2 = (2a)^2 + \left(\frac{a\sqrt{2}}{2}\right)^2 - 2(2a)\left(\frac{a\sqrt{2}}{2}\right)\left(\frac{1  }{\sqrt{2}}\right)


    AN^2 = (2a)^2 + \left(\frac{a}{\sqrt{2}}\right)^2 - 2(2a)\left(\frac{a}{\sqrt{2}}\right)\left(\frac{1}  {\sqrt{2}}\right)

    AN^2 = 4a^2 + \left(\frac{a^2}{2}\right) - 2a^2

    AN^2=2a^2+\frac{a^2}{2}

    AN^2=\frac{5a^2}{2}\Rightarrow AN=a\sqrt{\frac{5}{2}}


    b) and c) is correct
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Senior Member
    Joined
    Jan 2009
    Posts
    381
    Quote Originally Posted by Amer View Post
     <br />
AN^2=(2a)^2+(\frac{a\sqrt{2}}{2})^2-2(2a)(a\sqrt{2}{2})cos 45<br />
    should be

    AN^2 = (2a)^2 + \left(\frac{a\sqrt{2}}{2}\right)^2 - 2(2a)\left(\frac{a\sqrt{2}}{2}\right)\cos 45^o


    AN^2 = (2a)^2 + \left(\frac{a\sqrt{2}}{2}\right)^2 - 2(2a)\left(\frac{a\sqrt{2}}{2}\right)\left(\frac{1  }{\sqrt{2}}\right)


    AN^2 = (2a)^2 + \left(\frac{a}{\sqrt{2}}\right)^2 - 2(2a)\left(\frac{a}{\sqrt{2}}\right)\left(\frac{1}  {\sqrt{2}}\right)

    AN^2 = 4a^2 + \left(\frac{a^2}{2}\right) - 2a^2

    AN^2=2a^2+\frac{a^2}{2}

    AN^2=\frac{5a^2}{2}\Rightarrow AN=a\sqrt{\frac{5}{2}}


    b) and c) is correct
    THANKS so i think the answer given for b and c in my book is wrong .
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Trigo Eqn
    Posted in the Trigonometry Forum
    Replies: 7
    Last Post: December 2nd 2009, 02:53 AM
  2. Trigo qn
    Posted in the Trigonometry Forum
    Replies: 4
    Last Post: October 8th 2008, 04:13 AM
  3. Trigo qn
    Posted in the Trigonometry Forum
    Replies: 2
    Last Post: October 7th 2008, 04:39 AM
  4. trigo sum/different~do not do~!
    Posted in the Trigonometry Forum
    Replies: 5
    Last Post: September 11th 2008, 06:43 AM
  5. trigo > i cant do it!
    Posted in the Trigonometry Forum
    Replies: 3
    Last Post: September 9th 2008, 05:43 AM

Search Tags


/mathhelpforum @mathhelpforum