Results 1 to 5 of 5

Thread: Trigo- limit

  1. #1
    Super Member dhiab's Avatar
    Joined
    May 2009
    From
    ALGERIA
    Posts
    582
    Thanks
    3

    Trigo- limit

    Calculate :
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor red_dog's Avatar
    Joined
    Jun 2007
    From
    Medgidia, Romania
    Posts
    1,252
    Thanks
    5
    1) $\displaystyle \lim_{x\to\frac{\pi}{4}}(1-\sin 2x)\frac{\sin 2x}{\cos 2x}=\lim_{x\to\frac{\pi}{4}}\frac{(\cos x-\sin x)^2\sin 2x}{\cos^2x-\sin^2x}=$

    $\displaystyle =\lim_{x\to\frac{\pi}{4}}\frac{(\cos x-\sin x)\sin 2x}{\cos x+\sin x}=0$

    2) We have $\displaystyle \cos 2x=2\cos^2x-1=2\left(\cos^2x-\frac{1}{2}\right)=$

    $\displaystyle =2\left(\cos^2x-\cos^2\frac{\pi}{4}\right)=2\left(\cos x-\cos\frac{\pi}{4}\right)\left(\cos x+\cos\frac{\pi}{4}\right)$

    Then $\displaystyle \lim_{x\to\frac{\pi}{4}}\frac{\cos 2x}{\cos\frac{\pi}{4}-\cos x}=$

    $\displaystyle =\lim_{x\to\frac{\pi}{4}}\frac{2\left(\cos x-\cos\frac{\pi}{4}\right)\left(\cos x+\cos\frac{\pi}{4}\right)}{\cos\frac{\pi}{4}-\cos x}=$

    $\displaystyle =-\lim_{x\to\frac{\pi}{4}}2\left(\cos x+\cos\frac{\pi}{4}\right)=-2\sqrt{2}$

    Or you can use l'Hospital.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member dhiab's Avatar
    Joined
    May 2009
    From
    ALGERIA
    Posts
    582
    Thanks
    3
    Hello : ANATHOR SOLUTION


    but :


    and :

    conclusion :

    Thank you
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    12,880
    Thanks
    1946
    Quote Originally Posted by dhiab View Post
    Calculate :
    L'Hospital's Rule would be easiest to use here...

    $\displaystyle (1 - \sin{2x})\tan{2x} = \frac{\sin{2x} - \sin^2{2x}}{\cos{2x}}$.

    As $\displaystyle x \to \frac{\pi}{4}$, the fraction $\displaystyle \to \frac{0}{0}$.


    Using L'Hospital, this limit is the same as

    $\displaystyle \lim_{x \to \frac{\pi}{4}}\left(\frac{2\cos{2x} - 4\sin{2x}\cos{2x}}{-\sin{2x}}\right)$

    $\displaystyle = \frac{-0}{-1}$

    $\displaystyle = 0$.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    12,880
    Thanks
    1946
    Quote Originally Posted by dhiab View Post
    Calculate :
    As above, the easiest way to evaluate the second is with L'Hospital.

    The fraction $\displaystyle \to \frac{0}{0}$.

    So using L'Hospital, it is the same as

    $\displaystyle \lim_{x \to \frac{\pi}{4}}\left(\frac{-2\sin{2x}}{\sin{x}}\right)$

    $\displaystyle = \frac{-2\sin{\frac{\pi}{2}}}{\sin{\frac{\pi}{4}}}$

    $\displaystyle = \frac{-2}{\frac{1}{\sqrt{2}}}$

    $\displaystyle = -2\sqrt{2}$.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. limit-trigo
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: Oct 12th 2010, 08:40 PM
  2. Trigo-limit
    Posted in the Calculus Forum
    Replies: 2
    Last Post: Aug 30th 2010, 09:28 PM
  3. limit of trigo
    Posted in the Calculus Forum
    Replies: 6
    Last Post: Nov 9th 2009, 04:27 PM
  4. Trigo-limit
    Posted in the Trigonometry Forum
    Replies: 1
    Last Post: Oct 18th 2009, 08:29 PM
  5. Trigo- limit( tan and sin)
    Posted in the Trigonometry Forum
    Replies: 2
    Last Post: Aug 9th 2009, 12:47 PM

Search Tags


/mathhelpforum @mathhelpforum