Results 1 to 5 of 5

Math Help - Show that arccos(...) = ...

  1. #1
    Senior Member Twig's Avatar
    Joined
    Mar 2008
    From
    Gothenburg
    Posts
    396

    Show that arccos(...) = ...

    Hi

    Another "show that" problem involving inverse trig. functions.

    Show that  arccos(\frac{1}{\sqrt{1+x^{2}}}) = arctan(|x|)

    Since  | \frac{1}{\sqrt{1+x^{2}}} | \leq 1 , I assume I can take  cos(arccos(\frac{1}{\sqrt{1+x^{2}}})) = \frac{1}{\sqrt{1+x^{2}}}

    But what do I do with my right-side?

    Kinda stuck here.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor Amer's Avatar
    Joined
    May 2009
    From
    Jordan
    Posts
    1,093
    Quote Originally Posted by Twig View Post
    Hi

    Another "show that" problem involving inverse trig. functions.

    Show that  arccos(\frac{1}{\sqrt{1+x^{2}}}) = arctan(|x|)

    Since  | \frac{1}{\sqrt{1+x^{2}}} | \leq 1 , I assume I can take  cos(arccos(\frac{1}{\sqrt{1+x^{2}}})) = \frac{1}{\sqrt{1+x^{2}}}

    But what do I do with my right-side?

    Kinda stuck here.
    let u = arccos(\frac{1}{\sqrt{1+x^{2}}})

    cos(u)=(\frac{1}{\sqrt{1+x^{2}}})

    as you can see from the pic

    Show that arccos(...) = ...-23334.jpg

    tan(u) = x

    arctan(tan(u))=arctan(x)

    u=arctan(x) = arccos(\frac{1}{\sqrt{1+x^{2}}}) since

    we let
    u=arccos(\frac{1}{\sqrt{1+x^{2}}})
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Senior Member TheAbstractionist's Avatar
    Joined
    Apr 2009
    Posts
    328
    Thanks
    1
    Let \theta=\arccos\left(\frac1{\sqrt{1+x^2}}\right). Then

    \cos\theta\ =\ \frac1{\sqrt{1+x^2}}

    \implies\ \cos^2\theta\ =\ \frac1{1+x^2}\quad\ldots\,\fbox1

    \therefore\ \sin^2\theta\ =\ 1-\cos^2\theta\ =\ 1-\frac1{1+x^2}\ =\ \frac{x^2}{1+x^2}\quad\ldots\,\fbox2

    \therefore\ \tan^2\theta\ =\ \frac{\sin^2\theta}{\cos^2\theta}\ =\ x^2

    \implies\ \tan\theta\ =\ \pm|x|

    \implies\ \theta\ =\ \arctan(\pm|x|)\ =\ \pm\arctan|x|

    But since \arccos y\ge0 for all 0<y\le1, \theta\ge0. Hence \arccos\left(\frac1{\sqrt{1+x^2}}\right)=\arctan|x  |.
    Last edited by TheAbstractionist; June 11th 2009 at 04:31 AM.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Senior Member Twig's Avatar
    Joined
    Mar 2008
    From
    Gothenburg
    Posts
    396
    Thanks guys, always nice with a few different approaches.

    I think the drawing a triangle solution is something I need to remember.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,914
    Thanks
    779
    Hello, Twig!

    Show that: . \arccos\left(\frac{1}{\sqrt{1+x^{2}}}\right) \:=\: \arctan(|x|)
    Let: . y \;=\;\arccos\left(\frac{1}{\sqrt{1+x^2}}\right) \quad\Rightarrow\quad \cos y \:=\:\frac{1}{\sqrt{1+x^2}}

    Then: . \cos^2\!y \:=\:\frac{1}{1+x^2} \quad\Rightarrow\quad 1-\cos^2\!y \:=\:1 - \frac{1}{1+x^2} \:=\:\frac{x^2}{1+x^2}

    . . Hence: . \sin^2\!y \:=\:\frac{x^2}{1+x^2} \quad\Rightarrow\quad \sin y \:=\:\frac{\pm x}{\sqrt{1+x^2}}

    Then: . \tan y \:=\:\frac{\sin y}{\cos y} \;=\;\frac{\dfrac{\pm x}{\sqrt{1+x^2}}}{\dfrac{1}{\sqrt{1+x^2}}}\quad\Ri  ghtarrow\quad \tan y \;=\; \pm x

    . . Hence: . y \:=\:\arctan(\pm x) \;=\;\arctan|x|


    Therefore: . \arccos\left(\frac{1}{\sqrt{1+x^2}}\right) \;=\;\arctan|x|

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. How to integrate arccos?
    Posted in the Calculus Forum
    Replies: 1
    Last Post: February 28th 2011, 08:38 AM
  2. Sketching y = x arccos(x)
    Posted in the Calculus Forum
    Replies: 5
    Last Post: September 26th 2010, 05:58 AM
  3. arccos of arcsin?
    Posted in the Calculus Forum
    Replies: 1
    Last Post: October 10th 2008, 12:51 AM
  4. arccos identity
    Posted in the Trigonometry Forum
    Replies: 3
    Last Post: September 26th 2008, 09:09 PM
  5. Find the arccos value?
    Posted in the Trigonometry Forum
    Replies: 2
    Last Post: September 25th 2008, 01:04 PM

Search Tags


/mathhelpforum @mathhelpforum