Solve for x in sinx tanx + tanx – 2sinx + cosx = 0 for 0≤ x ≤ 2π rad.?
Hello, yoman360!
Please check for typos.
The best I can do is reduce it to a cubic equation with no rational roots.
Solve for
We see that neither nor is a root of the equation.
Divide by
. . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .
Square both sides: . . . . . . . . . . . .
. . . . . . . . .
And we have: . . . .
. . This cubic equation has no rational roots.
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
I realize that the roots need not be rational.
For example, if , then could be a root . . . (It isn't.)
And if , then could be a root . . . (It isn't.)
At this point, I surrendered . . .