(1+sinx/cosx)-(cosx/sinx-1)
Please simply this
This means no trig function in the denominator.
Thanks!
I'm arriving at a different result...
$\displaystyle (1+\frac{sinx}{cosx}) - (\frac{cosx}{sinx}-1)$
$\displaystyle 1 + \frac{sinx}{cosx} - \frac{cosx}{sinx} +1$
$\displaystyle \frac{sin^2{x}}{sinxcosx} - \frac{cos^2{x}}{sinxcosx}+2$
$\displaystyle \frac{sin^2{x}-cos^2{x}}{(\frac{1}{2})2sinxcosx} +2$
As $\displaystyle {cos^2{x}-sin^2{x}} = cos2x$ and $\displaystyle 2sinxcosx=sin2x$, we have:
$\displaystyle -2\frac{cos2x}{sin2x} +2$
$\displaystyle \therefore-2cot2x + 2$