1. ## trig equations help

solve the following equations in the given interval.

$\tan(3x+25) = -0.51$ $-90< x \leq 180$

2. ## formulas!

Try looking at your addition formulas and the problem doesn't seem so tough any more. I could solve it for you but that wouldn't be any fun!

3. Originally Posted by VonNemo19
Try looking at your addition formulas and the problem doesn't seem so tough any more. I could solve it for you but that wouldn't be any fun!
I dont know what the addition formula is, Have not been taugh that yet.

heres my working but I dont seem to get the right answers.

$\tan(3x+25) = -0.51$

$X = 3x+25$

$tanX = -0.51$

$tan^{-1} (-0.51) = -27.02$

$-90< x \leq180$

$-270< 3x \leq540$

$-245< 3x+25 \leq 565$

As tanX is −ve, X is in the 2nd and 4th quadrants

so the solutions between −245<X ≤ 565

should one of the solutions be 27 ?

also;

in the fourth qudrant = 360-27 = 333

second quadrant = 180-27 = 153

but I have to get all the solutions up to 565 , how do I do that ?

The correct answer are; X= −207, −27, 153, 333, 513,
can you explain how they get -27, -207 and 513 from ?