Please guys can you help me prove the following identities si((n)^(2))θsecθ=sinθtanθ tan^2 A= ((sin^2A)/(1-si((n)^(2))A)) 2-((tan)^(2))A=2((sec)^(2))A-3((tan)^(2))A Any help would be greatly appreciated. Cheers!
Follow Math Help Forum on Facebook and Google+
Does si(n^2)$\displaystyle \theta$ mean $\displaystyle sin^2 (\theta)$? For the second one, if you use $\displaystyle tan \theta= \frac{sin \theta}{cos \theta}$ and double angle formulae you should get the answer.
#1) sin(x)^2*sec(x) = sin(x) * tan(x) sin(x) * sec(x) = tan(x) sin(x) * 1/cos(x) = sin(x)/cos(x) sin(x)/cos(x) = sin(x)/cos(x)
View Tag Cloud