34*Sin^2[x]+Sin[2*x]-8*Cos^2[x]==4
Could someone please help me with this equation.
Thx
$\displaystyle 34\sin^2{x} + \sin(2x) - 8\cos^2{x} = 4(\sin^2{x} + \cos^2{x})
$
$\displaystyle 30\sin^2{x} + 2\sin{x}\cos{x} - 12\cos^2{x} = 0$
$\displaystyle 15\sin^2{x} + \sin{x}\cos{x} - 6\cos^2{x} = 0$
$\displaystyle (5\sin{x} - 3\cos{x})(3\sin{x} + 2\sin{x}) = 0$
I leave the rest for you ... set each factor equal to zero and solve.