I came up with tanx(x+4) If this is correct, am I supposed to distribute the tanx to the x and the 4?
I am sorry its incorrect
Why
$\displaystyle sin(x+4)sec(x)=\frac{sin(x+4)}{cos(x)} \ne tan(x+4) $
---------------------------------------------------------------------------
Use
Sin(a+b) = sin(a)cos(b) + cos(a)sin(b)
for sin(x+4) but I don't think this will simplify it
----------------------------------------------------------------------------
Was your question ?
Simplify $\displaystyle sin(x+4)sec(x+4) $!
If it was then you are Correct
Hello, captaintoast87!
It doesn't simplify too much . . .
$\displaystyle \sin(x+4)\cdot\sec x$
We have: .$\displaystyle \bigg[\sin x\cos 4 + \cos x\sin 4\bigg]\cdot\frac{1}{\cos x}$
. . . . . . $\displaystyle \;=\;\frac{\sin x\cos 4}{\cos x} + \frac{\cos x\sin 4}{\cos x}$
. . . . . . $\displaystyle =\;\cos 4\!\cdot\!\tan x + \sin 4 $