Thread: Sin in terms of tan.

1. Sin in terms of tan.

Hi,

How do I express $sin(\theta)$ in terms of $tan(\theta)$ by using the identities.
I can find most of the other(s) but this one is tricky.

It is meant to be this, but I can't see how.
$
\pm\frac{tan(\theta)}{\sqrt{1+tan^2(\theta)}}
$

I think you can get to it using the pythagoras identity and the ratio's alone. I think I am missing an obvious substitution.

Thanks
Craig.

2. Originally Posted by craigmain
Hi,

How do I express $sin(\theta)$ in terms of $tan(\theta)$ by using the identities.
I can find most of the other(s) but this one is tricky.

It is meant to be this, but I can't see how.
$
\pm\frac{tan(\theta)}{\sqrt{1+tan^2(\theta)}}
$

I think you can get to it using the pythagoras identity and the ratio's alone. I think I am missing an obvious substitution.

Thanks
Craig.
$\tan \theta = \frac{\sin \theta}{\cos \theta} \Rightarrow \sin \theta = \cos \theta \tan \theta$.

Now recall that $\sin^2 \theta + \cos^2 \theta = 1 \Rightarrow \tan^2 \theta + 1 = \frac{1}{\cos^2 \theta} \Rightarrow \cos^2 \theta = \frac{1}{1 + \tan^2 \theta}$.

3. Hello, Craig!

How do I express $\sin\theta$ in terms of $\tan\theta$ by using the identities.

It is meant to be this: . $\pm\frac{\tan\theta}{\sqrt{1+\tan^2\!\theta}}$
We have: . $\tan\theta \:=\:\frac{\sin\theta}{\cos\theta} \quad\Rightarrow\quad \sin\theta \:=\:\tan\theta\cos\theta \quad \Rightarrow\quad\sin\theta\:=\:\frac{\tan\theta}{\ sec\theta}$ .[1]

From the identity: . $\sec^2\!\theta \:=\:1 + \tan^2\!\theta$, we have: . $\sec\theta \:=\:\pm\sqrt{1+\tan^2\!\theta}$

Substitute into [1]: . $\sin\theta \:=\:\frac{\tan\theta}{\pm\sqrt{1+\tan^2\!\theta}} \quad\Rightarrow\quad\boxed{\sin\theta \:=\:\pm\frac{\tan\theta}{\sqrt{1+\tan^2\!\theta}} }$

4. Originally Posted by Soroban
Hello, Craig!

We have: . $\tan\theta \:=\:\frac{\sin\theta}{\cos\theta} \quad\Rightarrow\quad \sin\theta \:=\:\tan\theta\cos\theta \quad \Rightarrow\quad\sin\theta\:=\:\frac{\tan\theta}{\ sec\theta}$ .[1]

From the identity: . $\sec^2\!\theta \:=\:1 + \tan^2\!\theta$, we have: . $\sec\theta \:=\:\pm\sqrt{1+\tan^2\!\theta}$

Substitute into [1]: . $\sin\theta \:=\:\frac{\tan\theta}{\pm\sqrt{1+\tan^2\!\theta}} \quad\Rightarrow\quad\boxed{\sin\theta \:=\:\pm\frac{\tan\theta}{\sqrt{1+\tan^2\!\theta}} }$
I knew you were a slow typer (by your own admission) but this sets a new world record ..... over 1 hour to type this ...?