How do you solve:
$\displaystyle 3\cot^2 {x} + 4\csc^2 {x} = -4$
and
$\displaystyle 2\sin {x} \cos {x} +4\sin {x} = \cos {x} +2$
within $\displaystyle 0 \leq x \leq 2\pi$ ?
How do you solve:
$\displaystyle 3\cot^2 {x} + 4\csc^2 {x} = -4$
and
$\displaystyle 2\sin {x} \cos {x} +4\sin {x} = \cos {x} +2$
within $\displaystyle 0 \leq x \leq 2\pi$ ?