Results 1 to 3 of 3

Math Help - Product/sum identities - I need enlightenment!

  1. #1

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,824
    Thanks
    713
    Hello, Kaitosan!

    I saw these derived many year ago and the approach is still with me.

    We use these Compound Angle Identities:

    . . \sin(A \pm B) \:=\:\sin A\cos B \pm \sin B\cos A

    . . \cos(A \pm B) \:=\:\cos A\cos B  \mp \sin A\sin B


    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~


    Product-to-Sum Identities

    . . \begin{array}{cccc}<br />
[1] & \cos x\cos y &=& \frac{1}{2}\bigg[\cos(x+y) + \cos(x-y)\bigg] \\ \\[-3mm]<br />
[2] & \sin x\sin y &=&\frac{1}{2}\bigg[\cos(x-y) - \cos(x+y)\bigg] \\ \\ [-3mm]<br />
[3] & \sin x\cos y &=&\frac{1}{2}\bigg[\sin(x+y) + \sin(x-y)\bigg] \end{array}


    We have: . \begin{array}{ccccc}\cos(x+y) \:=\:\cos x\cos y - \sin x\sin y & {\color{blue}(a)} \\<br />
\cos(x-y) \:=\:\cos x\cos y + \sin x\sin y & {\color{blue}(b)} \end{array}


    Derivation of [1]

    Add {\color{blue}(a) + (b)}\!:\;\;\cos(x+y) + \cos(x-y) \;=\;2\cos x\cos y

    And we have: . \cos x\cos y \:=\:\tfrac{1}{2}\bigg[\cos(x+y) + \cos(x-y)\bigg]


    Derivation of [2]

    Subtract {\color{blue}(b) - (a)}\!: \;\;\cos(x-y) - \cos(x+y) \:=\:2\sin x\sin y

    And we have: . \sin x\sin y \:=\:\tfrac{1}{2}\bigg[\cos(x-y) - \cos(x+y)\bigg]


    Derivation of [3]

    We have: . \begin{array}{cccc}<br />
\sin(x+y) \:=\:\sin x\cos y + \sin y\cos x & {\color{blue}(c)} \\<br />
\sin(x-y) \:=\:\sin x\cos y - \sin y\cos x & {\color{blue}(d)} \end{array}

    Add {\color{blue}(c) + (d)}\!:\;\;\sin(x+y) + \sin(x-y) \:=\:2\sin x\cos y

    And we have: . \sin x\cos y \:=\:\tfrac{1}{2}\bigg[\sin(x+y) + \sin(x-y)\bigg]


    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~


    Sum-to-Product Identities

    . . \begin{array}{cccc}<br />
\sin x + \sin y &=&  2\sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \\ \\[-4mm]<br />
\sin x - \sin y &=& 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) \\ \\[-4mm]<br />
\cos x + \cos y &=& 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \\ \\[-4mm]<br />
\cos x - \cos y &=& \text{-}2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)<br />
\end{array}


    These can be derived from the previous four identities with a substitution.

    Let: . \begin{array}{ccc}<br />
u &=& x+y \\ v &=& x-y \end{array}\;\;{\color{red}[1]}\quad\Rightarrow\quad \begin{array}{ccc}x &=&\dfrac{u+v}{2} \\ \\[-4mm] y &=& \dfrac{u-v}{2} \end{array}\;\;{\color{red}[2]}


    From [3] we have: . \sin(x+y) + \sin(x-y) \:=\:2\sin x\cos y

    Substitute [1] and [2]: . \sin u + \sin v \:=\:  2\sin\left(\frac{u+v}{2}\right) \cos\left(\frac{u-v}{2}\right)


    . . . and so on.

    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    Dec 2008
    Posts
    228
    I see. Thank you.

    Personally, I think there's a clearer way to solve the sum identities.

    For example...

    sinx + siny = ???

    sin(a + b) + sin(a-b)

    Substituted x and y for double angles while keeping in mind that for all the sum identities that one trig identity must have a subtraction of angles (in this case, y).

    sina cosb + sinb cosa + sina cosb - sinb cosa added

    2 sina cosb answer

    2 sin (1/2)(x+y) + 2sin (1/2)(x-y) substituted........



    The product identities look tougher though because it looks like you have to memorize which identities to add....
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 6
    Last Post: June 22nd 2010, 11:59 PM
  2. multivariable differential for inner product(scalar product)?
    Posted in the Differential Geometry Forum
    Replies: 2
    Last Post: October 23rd 2009, 05:40 PM
  3. Replies: 4
    Last Post: October 13th 2009, 09:28 AM
  4. Replies: 4
    Last Post: September 2nd 2009, 04:07 AM
  5. Replies: 1
    Last Post: May 14th 2008, 11:31 AM

Search Tags


/mathhelpforum @mathhelpforum