Results 1 to 2 of 2

Thread: Trigonometry Help (Identities)

  1. #1
    Junior Member
    Joined
    Jun 2006
    Posts
    37

    Trigonometry Help (Identities)

    Hi!
    I just have one sum I need.
    xsinθ + ycosθ = sinθ.cosθ AND xsinθ - ycosθ = 0

    Prove that: x + y = 1

    I tried a lot, but couldn't get it.

    Thanks in advance.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    848
    Hello, Ruler of Hell!

    Given: .$\displaystyle \begin{array}{cccc}x\sin^3\!\theta + y\cos^3\!\theta \:= \:\sin\theta\cos\theta & {\color{blue}[1]}\\ x\sin\theta - y\cos\theta \:=\:0 & {\color{blue}[2]}\end{array}$

    Prove that: .$\displaystyle x^2 + y^2 \:=\: 1$

    From [2], we have: .$\displaystyle y\cos\theta \,=\,x\sin\theta \quad\Rightarrow\quad y \,=\,\frac{x\sin\theta}{\cos\theta}$ .[3]

    Substitute into [1]: .$\displaystyle x\sin^3\!\theta + \left(\frac{x\sin\theta}{\cos\theta}\right)\cos^3\ !\theta \:=\:\sin\theta\cos\theta $

    . . . . . . .$\displaystyle x\sin^3\!\theta + x\sin\theta\cos^2\!\theta \:=\:\sin\theta\cos\theta $


    $\displaystyle \text{Factor: }\;x\sin\theta\underbrace{(\sin^2\!\theta + \cos^2\!\theta)}_{\text{This is 1}} \:=\:\sin\theta\cos\theta$

    . . . . . . $\displaystyle x\sin\theta \:=\:\sin\theta\cos\theta \quad\Rightarrow\quad\boxed{ x \:=\:\cos\theta}$


    Substitute into [3]: .$\displaystyle y \:=\:\frac{(\cos\theta)(\sin\theta)}{\cos\theta} \quad\Rightarrow\quad\boxed{ y \:=\:\sin\theta} $


    Therefore: .$\displaystyle x^2 + y^2 \;=\;\cos^2\!\theta + \sin^2\!\theta \;=\;1$

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Trigonometry Identities? Please Help.
    Posted in the Trigonometry Forum
    Replies: 3
    Last Post: Dec 7th 2010, 08:35 AM
  2. Trigonometry help with identities
    Posted in the Trigonometry Forum
    Replies: 4
    Last Post: Jul 10th 2010, 12:40 PM
  3. Trigonometry Identities
    Posted in the Trigonometry Forum
    Replies: 1
    Last Post: Apr 30th 2009, 03:39 AM
  4. Trigonometry Identities
    Posted in the Trigonometry Forum
    Replies: 2
    Last Post: Apr 29th 2009, 07:20 PM
  5. Trigonometry Identities
    Posted in the Trigonometry Forum
    Replies: 2
    Last Post: Jun 18th 2008, 02:25 PM

Search Tags


/mathhelpforum @mathhelpforum