Results 1 to 3 of 3

Math Help - Trig help, please

  1. #1
    Newbie JoanneMac's Avatar
    Joined
    Nov 2008
    From
    seekonk, MA
    Posts
    12

    Exclamation Trig help, please

    Ok, here's some problems I hope to have solved...

    1. Given triangle ABC with a=12, b=10, and c=8, find the angles in degrees and minutes.

    2. Find the area of triangle ABC if a=40ft., b=25ft., and angleC=30degrees.

    3. A triangle has sides 18, 27, and 36. What's it's area?

    That's it for now. Thanks a bunch!

    Joanne
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor red_dog's Avatar
    Joined
    Jun 2007
    From
    Medgidia, Romania
    Posts
    1,252
    Thanks
    5
    1) \displaystyle\cos A=\frac{b^2+c^2-a^2}{2bc}

    2) The area is S=\frac{ab\sin C}{2}

    3) S=\sqrt{p(p-a)(p-b)(p-c)}, where p=\frac{a+b+c}{2}
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,710
    Thanks
    629
    Hello, Joanne!

    1. Given \Delta ABC with: a=12,\:b=10,\:c=8
    Find the angles in degrees and minutes.
    We're expected to know the Law of Cosines and its variations . . .


    \cos A \:=\:\frac{b^2+c^2-a^2}{2bc} \:=\:\frac{10^2+8^2-12^2}{2(10(8)} \:=\:0.125

    . . A \:=\:\cos^{-1}(0.125) \:\approx\:82.8192^o  \quad\Rightarrow\quad\boxed{A\:=\:82^o49'}


    \cos B \:=\:\frac{a^2+c^2-b^2}{2ac} \:=\:\frac{12^2+8^2-10^2}{2(12)(8)} \:=\:0.5625

    . . B \:=\:\cos^{-1}(0.5625) \:\approx\:55.7711^o \quad\Rightarrow\quad\boxed{ B\:=\:55^o46'}


    \cos C \:=\:\frac{a^2+b^2-c^2}{2ab} \:=\:\frac{12^2+10^2-8^2}{2(12)(10)} \:=\:0.75

    . . C \:=\:\cos^{-1}(0.75) \:\approx\:41.4096^o \quad\Rightarrow\quad\boxed{ C \:=\:41^o25'}




    2. Find the area of \Delta ABC\text{ if }a=40\text{ ft},\; b=25\text{ ft},\;\angle C=30^o
    Area formula: . A \;=\;\tfrac{1}{2}ab\,\sin C
    . . One-half the product of two sides times the sine of the included angle.

    A \;=\;\tfrac{1}{2}(40)(25)\sin30^o \;=\;\boxed{250\text{ ft}^2}




    3. A triangle has sides 18, 27, and 36. Find its area.
    We can find angle of the triangle (as we did in part 1).
    Then use the area formula in part 2.

    \cos A \:=\:\frac{b^2+c^2-a^2}{2bc} \:=\:\frac{27^2+36^2-18^2}{2(18)(27)} \:=\:0.875

    . . A \:=\:\cos^{-1}(0.875) \:=\:28.9550... \:\approx\:29^o


    \text{Area} \;=\;\tfrac{1}{2}bc\,\sin A \:=\:\tfrac{1}{2}(27)(36)\sin29^o \;\approx\;\boxed{235.6 \text{ units}^2}

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Compute Trig Function Values, Solve Trig Equation
    Posted in the Trigonometry Forum
    Replies: 1
    Last Post: September 8th 2011, 07:00 PM
  2. Replies: 7
    Last Post: April 15th 2010, 08:12 PM
  3. Replies: 6
    Last Post: November 20th 2009, 04:27 PM
  4. Replies: 1
    Last Post: July 24th 2009, 02:29 AM
  5. Trig Equations with Multiple Trig Functions cont.
    Posted in the Trigonometry Forum
    Replies: 4
    Last Post: April 7th 2008, 05:50 PM

Search Tags


/mathhelpforum @mathhelpforum