1. trig identites, help needed bad

1) sin8x= 8SinxCosxCox2xCos4x
2) sin^4x + cos^4x = sin^2x(csc^2x-2cos^2x)
3) sin4x/1-cos4x X 1-cos2x/cos2x= tan x
4) sin2x/1+cos2x X cosx/1+cosx= tan x/2

if anyone could prove any of these it will help alot

I'll do a couple of these for you . . .

$\displaystyle 2)\;\;\sin^4\!x + \cos^4\!x \:= \:\sin^2\!x(\csc^2\!x - 2\cos^2\!x)$
This one is really goofy . . .

On the left side, add and subtract $\displaystyle 2\sin^2\!x\cos^2\!x$

. . $\displaystyle \underbrace{\sin^4\!x \:{\color{blue}+\: 2\sin^2\!x\cos^2\!x} + \cos^4\!x} \:{\color{blue}- \:2\sin^2\!x\cos^2\!x}$

. . . . $\displaystyle = \;(\underbrace{\sin^2\!x + \cos^2\!x}_{\text{This is 1}})^2 - 2\sin^2\!x\cos^2\!x$

. . . . $\displaystyle = \;1 - 2\sin^2\!x\cos^2\!x$

. . . . $\displaystyle = \;\frac{\sin^2\!x}{\sin^2\!x} - 2\sin^2\!x\cos^2\!x$

Factor: .$\displaystyle \sin^2\!x\left[\frac{1}{\sin^2\!x} - 2\cos^2\!x\right]$

. . . . $\displaystyle = \;\sin^2\!x\left(\csc^2\!x - 2\cos^2\!x\right)$

$\displaystyle 4)\;\;\frac{\sin2x}{1+\cos2x}\cdot \frac{\cos x}{1+ \cos x} \:=\: \tan\tfrac{x}{2}$
For this one, we need more identities:

. . $\displaystyle \sin2\theta \:=\:2\sin\theta\cos\theta \qquad\qquad 1 + \cos2\theta \:=\:2\cos^2\theta$

Left side: .$\displaystyle \frac{\sin2x}{1 + \cos2x}\cdot\frac{\cos x}{1 + \cos x} \:=\:\frac{2\sin x\cos x}{2\cos^2\!x}\cdot\frac{\cos x}{1 + \cos x} \;=\;\frac{\sin x}{1 + \cos x}$

. . . . . $\displaystyle = \;\frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\! \frac{x}{2}} \;=\;\frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} \;=\;\tan\tfrac{x}{2}$