write in terms of sinθ and cosθ
cscθ - sinθcot^2θ
thanks so much. I keep getting different answers
Hello, fotzefotze!
Write in terms of $\displaystyle \sin\theta\text{ and }\cos\theta$
. . $\displaystyle \csc\theta - \sin\theta\cot^2\!\theta$
We have: .$\displaystyle \frac{1}{\sin\theta} - \sin\theta\!\cdot\!\frac{\cos^2\!\theta}{\sin^2\!\ theta} \;=\;\frac{1}{\sin\theta} - \frac{\cos^2\!\theta}{\sin\theta} \;=\;\frac{1-\cos^2\!\theta}{\sin\theta} \;=\;\frac{\sin^2\!\theta}{\sin\theta} \;=\;\sin\theta$