find the value of B given that:
Tan(3B - 4) = 1/Cot(5B - 8)
i do not know the steps to do this problem. i've tried to multiply tan and cot together but the answer wasn't correct
Hello, something3k!
Theorem: .If $\displaystyle \tan A = \tan B$, then $\displaystyle A \:=\:B + \pi n$ .for some integer $\displaystyle n.$
Solve for $\displaystyle \theta\!:\;\;\tan(3\theta - 4) \:=\: \frac{1}{\cot(5\theta - 8)} $
We have: .$\displaystyle \tan(3\theta - 4) \;=\;\tan(5\theta - 8)$
Then: .$\displaystyle 3\theta - 4 \;=\;5\theta-8 + \pi n$
. . . $\displaystyle 2\theta \;=\;4 + \pi n \quad\Rightarrow\quad \boxed{\theta \:=\:2 + \frac{\pi}{2}n} $