# trignometry

• Sep 7th 2008, 04:01 AM
dolly kohli
trignometry
Hi! can you solve this sum for me---
PQRS is a quadrilateral.The sides RS and QR are the same length.The sides QP and RS are parallel.Calculate:
1)angle SQR
2)angle PSQ
3)length PQ
4)length PS
5)Area of PQRS
• Sep 7th 2008, 02:11 PM
Soroban
Hello, dolly kohli!

Obviously, some information is missing . . .

Quote:

can you solve this sum for me --- sum?

Sides RS and QR are the same length.
Sides QP and RS are parallel.

Calculate:

$1)\;\angle SQR\qquad 2)\;\angle PSQ\qquad 3)\;\text{ length }PQ \qquad 4)\;\text{ length }PS \qquad 5)\;\text{ Area of }PQRS$

Code:

P                            Q o  *  *  *  *  *  *  *  *  *  o                         θ  * *                         * θ *        *              *    *         *        *      *           *    * θ      *             o  *  *  *  o             S          R

Since $RS = QR,\;\Delta QRS$ is isosceles.
. . Hence: . $\angle SQR \:=\:\angle QSR \:=\:\theta$

Since $QP \parallel RS,\;\angle PQS \:=\:\angle QSR \:=\:\theta$

Since $P$ can be anywhere to the upper-left on that line,
. . we cannot determine $\angle PSQ$

Nor can we find the lengths of $PQ$ and $PS$, or the area of $PQRS$.