Results 1 to 6 of 6

Math Help - simplifying and proving identities

  1. #1
    Banned
    Joined
    Jul 2008
    Posts
    29

    simplifying and proving identities

    degrees=(d)theta=(t) alpha=(a) beta=(B) pie(p)squared=(s)
    it will make much more sense if you use these.
    comment:just do the ones you know you don't have to do all of them.
    also write it out on paper in the right way not my way it will make it easier and i just need the work i am given the answers.


    1) simplify:cos(s)(t)+csc(s)(t)+cot(s)(t)+sin(s)(t) answer:2csc(s)(t)


    2)simplify:sec(s)(t)+csc(s)(t) answer :sec(s)(t)csc(s)(t)


    3)simplify:sin(3(p)/2+(t)) answer :-cos(t)


    4)simplify:2sin2(t) answer :4sin(t)cos(t)


    5)prove: tan(t)-cot(t)/tan(t)+cot(t)=2sin(s)(t)-1


    6)prove:1-cos(t)/sin(t)=sin(t)/1+cos(t)


    7)prove:1-tan(s)(t)/1+tan(s)(t)=1-2sin(s)(t)
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor Mathstud28's Avatar
    Joined
    Mar 2008
    From
    Pennsylvania
    Posts
    3,641
    Quote Originally Posted by Dave19 View Post
    degrees=(d)theta=(t) alpha=(a) beta=(B) pie(p)squared=(s)
    it will make much more sense if you use these.
    comment:just do the ones you know you don't have to do all of them.
    also write it out on paper in the right way not my way it will make it easier and i just need the work i am given the answers.


    1) simplify:cos(s)(t)+csc(s)(t)+cot(s)(t)+sin(s)(t) answer:2csc(s)(t)


    2)simplify:sec(s)(t)+csc(s)(t) answer :sec(s)(t)csc(s)(t)


    3)simplify:sin(3(p)/2+(t)) answer :-cos(t)


    4)simplify:2sin2(t) answer :4sin(t)cos(t)


    5)prove: tan(t)-cot(t)/tan(t)+cot(t)=2sin(s)(t)-1


    6)prove:1-cos(t)/sin(t)=sin(t)/1+cos(t)


    7)prove:1-tan(s)(t)/1+tan(s)(t)=1-2sin(s)(t)
    3)

    \cos\left(\frac{3\pi}{2}+x\right)

    \text{We know the addition formula to be}~~\sin\left(A+B\right)=\sin\left(A\right)\cos\l  eft(B\right)+\cos\left(A\right)\sin\left(B\right)

    \Rightarrow\sin\left(\frac{3\pi}{2}+x\right)=\sin\  left(\frac{3\pi}{2}\right)\cos(x)+\cos\left(\frac{  3\pi}{2}\right)\sin(x)

    =-\cos(x)+0\sin(x)

    =-\cos(x)


    \therefore\quad\boxed{\sin\left(\frac{3\pi}{2}+x\r  ight)=-\cos(x)}
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Rhymes with Orange Chris L T521's Avatar
    Joined
    May 2008
    From
    Chicago, IL
    Posts
    2,844
    Thanks
    3
    Quote Originally Posted by Dave19 View Post
    degrees=(d)theta=(t) alpha=(a) beta=(B) pie(p)squared=(s)
    it will make much more sense if you use these.
    comment:just do the ones you know you don't have to do all of them.
    also write it out on paper in the right way not my way it will make it easier and i just need the work i am given the answers.


    1) simplify:cos(s)(t)+csc(s)(t)+cot(s)(t)+sin(s)(t) answer:2csc(s)(t)


    2)simplify:sec(s)(t)+csc(s)(t) answer :sec(s)(t)csc(s)(t)


    3)simplify:sin(3(p)/2+(t)) answer :-cos(t)


    4)simplify:2sin2(t) answer :4sin(t)cos(t)


    5)prove: tan(t)-cot(t)/tan(t)+cot(t)=2sin(s)(t)-1


    6)prove:1-cos(t)/sin(t)=sin(t)/1+cos(t)


    7)prove:1-tan(s)(t)/1+tan(s)(t)=1-2sin(s)(t)




    note:I need these done for tomorrow morning so its either now or never
    (1)

    \cos^2x+\csc^2x+\cot^2x+\sin^2x

    \text{We need to use the Pythagorean identities:}

    \sin^2x=1-\cos^2x \ \text{and} \ \cot^2x=\csc^2x-1

    \text{Thus, } \cos^2x+\csc^2x+\underbrace{\csc^2x-1}_{\cot^2x}+\underbrace{1-\cos^2x}_{\sin^2x}=\color{red}\boxed{2\csc^2x}

    Does this make sense?

    --Chris
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member
    earboth's Avatar
    Joined
    Jan 2006
    From
    Germany
    Posts
    5,830
    Thanks
    123
    Quote Originally Posted by Dave19 View Post
    degrees=(d)theta=(t) alpha=(a) beta=(B) pie(p)squared=(s)
    it will make much more sense if you use these.
    comment:just do the ones you know you don't have to do all of them.
    ...

    1) simplify:cos(s)(t)+csc(s)(t)+cot(s)(t)+sin(s)(t) answer:2csc(s)(t)


    ...
    \cos^2(\theta)+\csc^2(\theta)+\cot^2(\theta)+\sin^  2(\theta) = \underbrace{\cos^2(\theta)+\sin^2(\theta)}_{\text{  = 1}} +\csc^2(\theta)+\cot^2(\theta)

    1+\csc^2(\theta)+\cot^2(\theta)=1+\frac1{\sin^2(\t  heta)} + \frac{\cos^2(\theta)}{\sin^2(\theta)} = \frac{\sin^2(\theta)}{\sin^2(\theta)} +\frac1{\sin^2(\theta)} + \frac{\cos^2(\theta)}{\sin^2(\theta)}

    \frac{\sin^2(\theta)}{\sin^2(\theta)} +\frac1{\sin^2(\theta)} + \frac{\cos^2(\theta)}{\sin^2(\theta)}=\frac{\sin^2  (\theta) + 1 + \cos^2(\theta)}{\sin^2(\theta)} = \frac{\underbrace{\sin^2(\theta) + \cos^2(\theta)}_{\text{= 1}} + 1 }{\sin^2(\theta)}

    \frac2{\sin^2(\theta)}= 2 \cdot \left(\frac1{\sin(\theta)}\right)^2 = 2\csc^2(\theta)
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Moo
    Moo is offline
    A Cute Angle Moo's Avatar
    Joined
    Mar 2008
    From
    P(I'm here)=1/3, P(I'm there)=t+1/3
    Posts
    5,618
    Thanks
    6
    I always transform into sin, cos and tan, because it's much easier
    \sec(t)=\frac{1}{\cos(t)}

    \csc(t)=\frac{1}{\sin(t)}

    \cot(t)=\frac{\cos(t)}{\sin(t)}

    and it's PI, not pie.

    Furthermore, I think it's not very useful to give you all the solution... just try to do it with the information and then, tell us if you can't do it

    Quote Originally Posted by Dave19 View Post
    degrees=(d)theta=(t) alpha=(a) beta=(B) pie(p)squared=(s)
    it will make much more sense if you use these.
    comment:just do the ones you know you don't have to do all of them.
    also write it out on paper in the right way not my way it will make it easier and i just need the work i am given the answers.


    2)simplify:sec(s)(t)+csc(s)(t) answer :sec(s)(t)csc(s)(t)
    \frac{1}{\cos^2(t)}+\frac{1}{\sin^2(t)}
    get the common denominator, and use the identity \cos^2(t)+\sin^2(t)=1


    3)simplify:sin(3(p)/2+(t)) answer :-cos(t)
    Use \sin(a+b)=\cos(a)\sin(b)+\cos(b)\sin(a)



    4)simplify:2sin2(t) answer :4sin(t)cos(t)
    Use the same identity as above :

    \sin(2t)=\cos(t)\sin(t)+\dots

    5)prove: tan(t)-cot(t)/tan(t)+cot(t)=2sin(s)(t)-1
    I guess it is \frac{\tan(t)-\cot(t)}{\tan(t)+\cot(t)} (please use parenthesis ! pemdo rules or something like that...)

    transform \tan=\frac \sin \cos and \cot=\frac \cos \sin

    then get the common denominator on the numerator and the denominator.

    6)prove:1-cos(t)/sin(t)=sin(t)/1+cos(t)
    \frac{1-\cos(t)}{\sin(t)}=\frac{\sin(t)}{1+\cos(t)}
    or
    1-\frac{\cos(t)}{\sin(t)}=\frac{\sin(t)}{1+\cos(t)}
    ?
    Do you see the purpose of parenthesis ?


    7)prove:1-tan(s)(t)/1+tan(s)(t)=1-2sin(s)(t)
    idem
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,904
    Thanks
    765
    Hello, Dave19!

    1) Simplify: . \cos^2\!\theta+\csc^2\!\theta + \cot^2\!\theta + \sin^2\!\theta

    Answer: . 2\csc^2\!\theta
    We have: . \underbrace{\sin^2\!\theta + \cos^2\!\theta} + \csc^2\!\theta + \cot^2\!\theta
    . . . . . . . . . = \;\;1 \;+ \;\csc^2\!\theta \;+\; \overbrace{\csc^2\!\theta - 1} \;\;=\;\;2\csc^2\!\theta



    2) Simplify: . \sec^2\theta+\csc^2\!\theta

    Answer: . \sec^2\!\theta\csc^2\!\theta
    We have: . \frac{1}{\cos^2\!\theta} + \frac{1}{\sin^2\!\theta} \;=\;\frac{\overbrace{\sin^2\!\theta + \cos^2\!\theta}^{\text{This is 1}}}{\cos^2\!\theta\sin^2\!\theta}

    . . =\;\frac{1}{\cos^2\!\theta\sin^2\theta}  \;=\;\sec^2\!\theta\csc^2\theta



    5) Prove: . \frac{\tan\theta-\cot\theta}{\tan\theta +\cot\theta} \:=\:2\sin^2\!\theta -1
    We have: . \frac{\;\dfrac{\sin\theta}{\cos\theta} - \dfrac{\cos\theta}{\sin\theta}\;} {\dfrac{\sin\theta}{\cos\theta} + \dfrac{\cos\theta}{\sin\theta}}


    Multiply top and bottom by \sin\theta\cos\theta

    . . \frac{\sin\theta\cos\theta\left(\dfrac{\sin\theta}  {\cos\theta} - \dfrac{\cos\theta}{\sin\theta}\right)} {\sin\theta\cos\theta\left(\dfrac{\sin\theta}{\cos  \theta} + \dfrac{\cos\theta}{\sin\theta}\right)}<br />
\;\;=\;\;\frac{\sin^2\!\theta-\cos^2\!\theta}{\underbrace{\sin^2\!\theta + \cos^2\theta}_{\text{This is 1}}}

    . . = \;\;\sin^2\!\theta - \cos^2\!\theta \;\;=\;\;\sin^2\!\theta - (1 - \sin^2\!\theta) \;\;=\;\;2\sin^2\!\theta - 1




    6) Prove: . \frac{1-\cos\theta}{\sin\theta} \:=\:\frac{\sin\theta}{1+\cos\theta}
    Multiply the left side by: \frac{1+\cos\theta}{1+\cos\theta}

    . \frac{1-\cos\theta}{\sin\theta}\cdot{\color{blue}\frac{1+\  cos\theta}{1+\cos\theta}} \;=\;\frac{1-\cos^2\!\theta}{\sin\theta\,(1 + \cos\theta)} \;=\;\frac{\sin^2\!\theta}{\sin\theta\,(1 + \cos\theta)} \;=\;\frac{\sin\theta}{1 + \cos\theta}

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 6
    Last Post: June 23rd 2010, 12:59 AM
  2. Trig Identities - Simplifying
    Posted in the Trigonometry Forum
    Replies: 4
    Last Post: April 13th 2010, 09:20 AM
  3. simplifying identities
    Posted in the Trigonometry Forum
    Replies: 4
    Last Post: January 4th 2010, 06:23 PM
  4. Simplifying trig identities
    Posted in the Trigonometry Forum
    Replies: 1
    Last Post: October 15th 2009, 02:49 PM
  5. [SOLVED] simplifying using set identities
    Posted in the Discrete Math Forum
    Replies: 3
    Last Post: March 6th 2009, 02:26 AM

Search Tags


/mathhelpforum @mathhelpforum