Results 1 to 4 of 4

Math Help - Maths - Please Help !!

  1. #1
    Junior Member
    Joined
    Jul 2008
    From
    Sydney, Australia
    Posts
    30

    Maths - Please Help !!

    There are 4 questions that i need help in and if you can even answer one of them that would be great ! Plus the level of these questions are just highschool. [Im in my last year of highschool]. I'd truly appreciate the help

    1) Prove this identity:

    (cosecx + cotx)(cosecx - cotx) = (cotx)(tanx)


    I started with LHS = (cosecx + cotx)(cosecx - cotx)
    but don't know how to continue because these really confuse me.

    2) Solve the following equation for theta (θ) over the given domain:

    √3 sin 2θ = cos 2θ

    Domain: 0 < θ < 360


    3) Find all solutions in the interval -180 ≤ x ≤ 180 to the equation cosx + (sin^2)x = 5/4

    4) The sides of a triangle are given by the lines:

    • 2x - y + 3 = 0

    • x - 2y - 3 = 0
    • 2x + y - 11 = 0
    Find the area of this triangle.


    I started off by saying for each equation:
    when x = 0
    y = ?
    [I'd substitute x = 0 into every equation]

    and I also did when y = 0, x = ? [by substituing y = 0 into all equations]
    i got the points (-3/2, 1), (3, 0) and (11/2, 11)
    Are the points that i got right ? And then i plotted the points which gave me a triangle. Now what do i do ?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Senior Member
    Joined
    Dec 2007
    From
    Melbourne
    Posts
    428
    1) Prove this identity:

    (cosecx + cotx)(cosecx - cotx) = (cotx)(tanx)


    I started with LHS = (cosecx + cotx)(cosecx - cotx)
    but don't know how to continue because these really confuse me.
    you need to know the following
    \cot x = \frac{1}{\tan x}
    cosec (x) = \frac{1}{\sin x}
    \sin^2 x+ \cos^2 x = 1

    The most obvious way to do this is to just start simplifying both sides of the equation. Post again if you get stuck.

    2) Solve the following equation for theta (θ) over the given domain:

    √3 sin 2θ = cos 2θ

    Domain: 0 < θ < 360
    the trick to this type of question is dividing by the cos part to get a tan, in this case
    \sqrt{3}\sin(2\theta)=\cos(2\theta)
    \sqrt{3}\frac{\sin(2\theta)}{\cos(2\theta)}=1
    \sqrt{3}\tan(2\theta)=1

    3) Find all solutions in the interval -180 ≤ x ≤ 180 to the equation cosx + (sin^2)x = 5/4
    Use \sin^2 x+ \cos^2 x = 1
    sin^2(x) = ?

    4) The sides of a triangle are given by the lines:
    • 2x - y + 3 = 0
    • x - 2y - 3 = 0
    • 2x + y - 11 = 0
    Find the area of this triangle.


    I started off by saying for each equation:
    when x = 0
    y = ?
    [I'd substitute x = 0 into every equation]

    and I also did when y = 0, x = ? [by substituing y = 0 into all equations]
    i got the points (-3/2, 1), (3, 0) and (11/2, 11)
    Are the points that i got right ? And then i plotted the points which gave me a triangle. Now what do i do ?
    I'm not sure what you are doing here. To find the corners of the triangle you need to find the points where the lines intersect. You do this by taking each of the 3 possible pairs of lines and solving them simultaneously for x and y. To get the area, you probably are expected to use base X height/2. This is probably most easily done by finding the distances along each side and using Pythagoras' theorem to find the height.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Eater of Worlds
    galactus's Avatar
    Joined
    Jul 2006
    From
    Chaneysville, PA
    Posts
    3,001
    Thanks
    1
    One cool way you could go about it. Perhaps not the easiest. Using Heron's formula.

    Find the intersection points of the lines and then use the distance formula to find the distance between them. Those will be the lengths of the sides of the triangle.

    2x+3=\frac{x}{2}-\frac{3}{2}

    x=-3, \;\ y=3

    \frac{x}{2}-\frac{3}{2}=-2x+11

    x=5, \;\ y=1

    2x+3=-2x+11

    x=2, \;\ y=7

    a=\sqrt{(-3-5)^{2}+(3-1)^{2}}=2\sqrt{17}

    b=\sqrt{(-3-2)^{2}+(3-7)^{2}}=\sqrt{41}

    c=\sqrt{(5-2)^{2}+(1-7)^{2}}=3\sqrt{5}

    Using Heron's formula, the semi-perimeter is

    s=\frac{(2\sqrt{17}+\sqrt{41}+3\sqrt{5})}{2}\appro  x{10.68}

    Heron's formula to find area:

    \sqrt{s(s-a)(s-b)(s-c)}
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,802
    Thanks
    692
    He4llo, sweetG

    4) The sides of a triangle are given by the lines: . \begin{array}{ccc}2x - y + 3 &= &0 \\ x - 2y - 3 &=& 0 \\ 2x + y - 11 &=& 0 \end{array}
    Find the area of this triangle.
    Solve each equation for y.

    . . \begin{array}{cccc}y &=&2x + 3 & [1] \\ \\[-4mm] y &=&\frac{1}{2}x - \frac{3}{2} & [2] \\ \\[-4mm] y &=& \text{-}2x + 11 & [3]\end{array}

    Note that: . [2] \perp [3] . . . It is a right triangle!


    Find the intersections . . .

    [1] \cap [2]\!:\;\;2x + 3 \:=\:\frac{1}{2}x-\frac{3}{2} \quad\Rightarrow\quad x \:=\:\text{-}3,\;y\:=\:\text{-}3 \quad\Rightarrow\quad A(\text{-}3,\,\text{-}3)

    [1] \cap [3]\!:\;\;2x+3 \:=\:-2x+11\quad\Rightarrow\quad x\:=\;2,\;y\:=\:7 \quad\Rightarrow\quad B(2,7)

    [2] \cap [3]\!:\;\;\frac{1}{2}x-\frac{3}{2}\:=\:-2+11\quad\Rightarrow\quad x \:=\:5,\;y\:=\:1 \quad\Rightarrow\quad C(5,1)

    The right angle is at C.
    Hence, AC is the base, BC is the height.

    Go for it!

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Should I buy maths books to teach myself maths.
    Posted in the Math Topics Forum
    Replies: 2
    Last Post: November 21st 2011, 03:45 PM
  2. Help me with my grade 11 maths [easy maths]
    Posted in the Pre-Calculus Forum
    Replies: 11
    Last Post: December 27th 2009, 03:09 PM
  3. Maths help.
    Posted in the Algebra Forum
    Replies: 2
    Last Post: October 29th 2009, 07:17 AM
  4. Replies: 0
    Last Post: September 5th 2007, 02:50 AM
  5. Replies: 1
    Last Post: October 3rd 2006, 08:59 AM

Search Tags


/mathhelpforum @mathhelpforum