i can't solve this trigo equ.
$\displaystyle 2sinx cos^2x - (1+sinx)(cos^2 x - sin ^2 x) = 0$
$\displaystyle sin 2xcos^2 x - (1+sinx )(cos2x)= 0$
$\displaystyle tan2x = \frac {1+sinx}{cos^2x}$
?
I used the identities $\displaystyle 2\sin x\cos x=\sin 2x$ and $\displaystyle \cos^2x-\sin^2x=\cos 2x$
Now, the equation becomes
$\displaystyle \sin 2x\cos x-\cos 2x-\sin x\cos 2x=0\Leftrightarrow \sin x-\cos 2x=0$
(I used the formula $\displaystyle \sin(a-b)=\sin a\cos b-\sin b\cos a$)
Using the formula $\displaystyle \cos 2x=1-2\sin^2x$ the equation becomes $\displaystyle 2\sin^2x+\sin x-1=0$
Let $\displaystyle \sin x=t$ and the equation $\displaystyle 2t^2+t-1=0$ has the roots $\displaystyle t_1=-1, \ t_2=\frac{1}{2}$
So you have to solve the equations $\displaystyle \sin x=-1$ and $\displaystyle \sin x=\frac{1}{2}$