Results 1 to 2 of 2

Math Help - trigo problem no. 20

  1. #1
    Member
    Joined
    Sep 2007
    Posts
    176

    trigo problem no. 20

    p165 q14
    i did this question correctly a month ago. but know i try 15 min. and still don't figure out how to do! i write notes on textbook and don't keep a notebook. thanks in advance!
    Attached Thumbnails Attached Thumbnails trigo problem no. 20-out0077.jpeg  
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,676
    Thanks
    608
    Hello, afeasfaerw23231233!

    Given: . \begin{array}{cccc}\cos(\theta+\alpha) & = & p & {\color{blue}[1]}\\ \sin(\theta+\beta)  &=& q & {\color{blue}[2]}\end{array}

    (a) Express \cos\theta\text{ and }\sin\theta in terms of <br />
\alpha,\:\beta,\:p\text{, and }q.

    (b) Hence, show that: . p^2+q^2+ 2pq\sin(\alpha-\beta) \;=\;\cos^2\!(\alpha-\beta)

    \begin{array}{ccccc}\text{From }{\color{blue}[1]}: & \cos\alpha\cos\theta - \sin\alpha\sin\theta &=& p & {\color{blue}[3]}\\<br />
\text{From }{\color{blue}[2]}: & \sin\beta\cos\theta + \cos\beta\sin\theta &=& q & {\color{blue}[4]}\end{array}

    \begin{array}{cccc}\text{Multiply }{\color{blue}[3]}\text{ by }\cos\beta: & \cos\alpha\cos\beta\cos\theta - \sin\alpha\cos\beta\sin\theta & = & p\cos\beta \\<br />
\text{Multiply }{\color{blue}[4]}\text{ by }\sin\alpha: & \sin\alpha\sin\beta\cos\theta + \sin\alpha\cos\beta\sin\theta &=& q\sin\alpha \end{array}

    Add: . (\cos\alpha\cos\beta + \sin\alpha\sin\beta)\cos\theta \:=\:p\cos\beta + q\sin\alpha

    Therefore: . \cos\theta \;=\;\frac{p\cos\beta + q\sin\alpha}{\cos\alpha\cos\beta + \sin\alpha\sin\beta} \quad\Rightarrow\quad\boxed{\;\cos\theta \;=\;\frac{p\cos\beta + q\sin\alpha}{\cos(\alpha - \beta)}\;}\;\;{\color{red}[1]}

    In a similar fashion, we find that: . \boxed{\;\sin\theta \;=\;\frac{q \cos\alpha- p\sin\beta} {\cos(\alpha-\beta)}\;} \;\;{\color{red}[2]}


    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

    Square [2]: . \sin^2\!\theta \;=\;\frac{q^2\cos^2\!\alpha - 2pq\sin\beta\cos\alpha + p^2\sin^2\!\beta}{\cos^2\!(\alpha-\beta)}

    Square [1]: . \cos^2\!\theta  \;=\;\frac{p^2\cos^2\!\beta + 2pq\sin\alpha\cos\beta + q^2\sin^2\!\alpha}{\cos^2\!(\alpha-\beta)}

    Add: . \sin^2\!\theta \:+ \:\cos^2\!\theta \;=\;\frac{p^2(\sin^2\!\beta +\cos^2\!\beta) + q^2(\sin^2\!\alpha +\cos^2\!\alpha) + 2pq(\sin\alpha\cos\beta - \sin\beta\cos\alpha)}{\cos^2\!(\alpha-\beta)}

    And we have: . 1 \;=\;\frac{p^2 + q^2 + 2pq\sin(\alpha-\beta)}{\cos^2\!(\alpha-\beta)}

    Therefore: . \boxed{p^2+q^2+2pq\sin(\alpha-\beta) \;=\;\cos^2\!(\alpha-\beta)}

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. trigo problem
    Posted in the Trigonometry Forum
    Replies: 4
    Last Post: December 24th 2009, 07:08 AM
  2. trigo problem no. 21
    Posted in the Trigonometry Forum
    Replies: 0
    Last Post: March 8th 2008, 07:44 AM
  3. trigo problem no. 14
    Posted in the Trigonometry Forum
    Replies: 2
    Last Post: February 9th 2008, 12:12 AM
  4. trigo problem no. 11
    Posted in the Trigonometry Forum
    Replies: 5
    Last Post: January 31st 2008, 06:41 AM
  5. trigo problem no. 9
    Posted in the Trigonometry Forum
    Replies: 2
    Last Post: January 27th 2008, 10:51 PM

Search Tags


/mathhelpforum @mathhelpforum