Originally Posted by
cloudzer0 Thank you for your help, I actually worked it through and figured out those problems myself. However, there are still some confusions going on which I've been looking at for a good while.
Couple of other different problems.
Problem:
cos θ = sin θ
Mr F says: Divide both sides by $\displaystyle \cos \theta: \, $ $\displaystyle \tan \theta = 0$ .....
My work:
cos θ - sin θ = 0
=> (cosθ - sin θ)ē = 0
=> cosēθ - 2cosθsinθ + sinēθ =0
=> 1-2cosθsinθ = 0
I'm pretty much stuck at this point. Did I do something wrong?
*************
Another problem which I seem to have trouble with is:
(tan θ - 1)(sec θ - 1) = 0
Mr F says: Solve the two equations $\displaystyle \tan \theta -1 = 0 \Rightarrow \tan \theta = 1$ ...... and $\displaystyle \sec \theta - 1 = 0 \Rightarrow \frac{1}{\cos \theta} - 1 = 0 \Rightarrow \frac{1}{\cos \theta} = 1 \Rightarrow \cos \theta = 1$ .......