# Thread: [SOLVED] Proof help!

1. ## [SOLVED] Proof help!

cot2x = (cosx+cos3x)/(sin3x+sinx) please list all steps. It's REALLY hard .thx

2. cot(2x) = (cos(x) +cos(3x)) / (sin(3x) +sin(x)) -------(i)
Or, rewriting that,
cot(2x) = [cos(3x) +cos(x)] / [sin(3x) +sin(x)] -------(ii)

RHS of (ii) =
= [cos(3x) +cos(x)] / [sin(3x) +sin(x)]

Using trig identities:
cosA +cosB = 2cos((A+B)/2)cos((A-B)/2)
sinA +sinB = 2sin((A+B)/2)cos((A-B)/2),

= [2cos((3x+x)/2)cos((3x-x)/2)] / [2sin((3x+x)/2)cos((3x-x)/2)]
= cos(2x) / sin(2x)
= cot(2x)
= LHS

So, proven.

3. Hello, bsothe1!

If we are allowed the Sum-to-Product identities, it's easy.

. . $\displaystyle \sin A + \sin B \:=\:2\sin\!\left(\frac{A+B}{2}\right)\cos\!\left( \frac{A-B}{2}\right)$

. . $\displaystyle \cos A + \cos B \:=\:2\cos\!\left(\frac{A+B}{2}\right)\cos\!\left( \frac{A-B}{2}\right)$

$\displaystyle \cot2x \:= \:\frac{\cos3x + \cos x}{\sin3x+\sin x}$

The numerator is: .$\displaystyle \cos3x + \cos x \:=\: 2\cos\!\left(\frac{3x+x}{2}\right)\cos\!\left(\fra c{3x-x}{2}\right) \:=\; 2\cos2x\cos x$

The denominator is: .$\displaystyle \sin3x + \sin x \:=\:2\sin\!\left(\frac{3x+x}{2}\right)\cos\!\left (\frac{3x-x}{2}\right) \:=\:2\sin2x\cos x$

The right side becomes: .$\displaystyle \frac{2\cos2x\cos x}{2\sin2x\cos x} \;=\;\frac{\cos2x}{\sin2x} \:=\:\cot2x$

,

,

,

,

### cot2x -tanx = cos 3x/cosx sin2x

Click on a term to search for related topics.