Results 1 to 7 of 7
Like Tree4Thanks
  • 2 Post By BobP
  • 1 Post By Ragnarok
  • 1 Post By BobP

Math Help - Tricky induction problem with trig

  1. #1
    Member
    Joined
    Apr 2010
    Posts
    116
    Thanks
    1

    Tricky induction problem with trig

    Okay, I'm working on a really tricky induction problem where I have to show the following (assuming that \sin{(x/2)}\neq0):
    \sin{(x)}+2\sin{(2x)}+\ldots +n\sin{(nx)}=\frac{\sin{[(n+1)x]}}{4\sin^2{(x/2)}}-\frac{(n+1)\cos{[(2n+1)(x/2)]}}{2\sin{(x/2)}}
    for all natural numbers n.

    I've already verified the base case (with the help of ebaines), so now I'm trying to show that the above equation implies this equation:

    \noindent{ \sin{(x)}+2\sin{(2x)}+\ldots +(n+1)\sin{[(n+1)x]}= \frac{\sin{[(n+2)x]}}{4\sin^2{(x/2)}}-\frac{(n+2)\cos{[(2n+3)(x/2)]}}{2\sin{(x/2)}}}

    I almost hesitate to ask this as to me it seems either impossible or a huge amount of work, but perhaps that's not so for those with more experience. Using the first equation we can write the second equation as

    \noindent{\sin{(x)}+2\sin{(2x)}+\ldots +(n+1)\sin{[(n+1)x]}=\frac{\sin{[(n+1)x]}}{4\sin^2{(x/2)}}-\frac{(n+1)\cos{[(2n+1)(x/2)]}}{2\sin{(x/2)}}+(n+1)\sin{[(n+1)x]}}

    so what we desire to show is that

    \noindent{\frac{\sin{[(n+1)x]}}{4\sin^2{(x/2)}}-\frac{(n+1)\cos{[(2n+1)(x/2)]}}{2\sin{(x/2)}}+(n+1)\sin{[(n+1)x]}=\frac{\sin{[(n+2)x]}}{4\sin^2{(x/2)}}-\frac{(n+2)\cos{[(2n+3)(x/2)]}}{2\sin{(x/2)}}}

    So I'm unsure where to go from here. We already have the denominators set up neatly, so I don't want to mess with that. I thought about distributing the n+1 in the third term and then adding the resulting two terms to the first two terms in some manner, but I'm not sure how the arguments will work out. Can anyone help?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member
    Joined
    Apr 2010
    Posts
    116
    Thanks
    1

    Re: Tricky induction problem with trig

    In order to see if there's some kind of strategy with this, I'm trying the desired identity with n=3, giving
    \frac{\sin{(4x)}}{4\sin^2{(x/2)}}-\frac{4\cos{(7x/2)}}{2\sin{(x/2)}}+4\sin{(4x)}=\frac{\sin{(5x)}}{4\sin^2{(x/2)}}-\frac{5\cos{(9x/2)}}{2\sin{(x/2)}}

    How would you go about showing this sort of thing?

    For example, is there a way of writing \sin{(5x)} in terms of functions with an argument of 4x?
    Last edited by Ragnarok; June 23rd 2013 at 09:21 PM.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    Apr 2010
    Posts
    116
    Thanks
    1

    Re: Tricky induction problem with trig

    Okay before anyone wastes time doing this I just found the answer on Chegg. Thanks anyway!
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member
    Joined
    Jun 2009
    Posts
    660
    Thanks
    133

    Re: Tricky induction problem with trig

    Hi Ragnorak

    I have a solution to this problem, took me an hour or so !
    What method of solution did Chegg use ?
    If different, I'll post mine.
    Thanks from topsquark and Ragnarok
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Member
    Joined
    Apr 2010
    Posts
    116
    Thanks
    1

    Re: Tricky induction problem with trig

    Nice! I am far too lazy to type up Chegg's whole solution but the main steps were (starting from the LHS of the desired identity, last one in my first post):

    Got a common denominator.
    Rewrote 4(n+1)\sin{[(n+1)x]}\sin^2{(x/2)} in the numerator as 2(n+1)\sin{[(n+1)x]}2\sin^2{(x/2)}=
     =2(n+1)\sin{[(n+1)x]}(1-\cos{(x)}) (half-angle formula).
    Distributed 1-\cos{(x)}.
    Added \sin{[(n+1)x]} terms.
    Factored -2(n+1) out of remaining terms.
    Used product identies on \sin{(x/2)}\cos{[(2n+1)(x/2)]} and \sin{[(n+1)x]}\cos{(x)} terms.
    Simplified.
    Used a difference identity on \sin{[(n+1)x]}-\sin{[(n+2)x]}.
    Simplified and divided by denominator.
    Thanks from topsquark
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Super Member
    Joined
    Jun 2009
    Posts
    660
    Thanks
    133

    Re: Tricky induction problem with trig

    Okay, I used the same identities but attacked it in a different way, (having failed to find my way through the induction approach).

    Start by letting

    S=\sin x + 2\sin 2x + 3\sin 3x + \dots + k\sin kx.

    Then, multiplying by 2\cos x,

    2S\cos x = 2\sin x\cos x + 2(2\sin 2x \cos x)+3(2\sin 3x \cos x) +\dots + k(2\sin kx \cos x)

    =\sin 2x + 2(\sin 3x+\sin x)+3(\sin 4x+\sin 2x) + 4(\sin 5x + \sin 3x)+\dots + k(\sin(k+1)x + \sin(k-1)x),

    =2\sin x + 4\sin 2x+ 6\sin 3x  +\dots + (2k-2)\sin (k-1)x +(k-1)\sin kx + k\sin (k+1)x.

    Now subtract the original series,

    2S\cos x - S = \sin x + 2\sin 2x + 3\sin 3x +\dots +(k-1)\sin (k-1)x + (k-1)\sin kx + k\sin (k+1)x - k\sin kx,

    = S+ (k-1)\sin kx + k\sin (k+1)x -2k\sin kx,

    = S - \sin (k+1)x +(k+1)\sin (k+1)x -(k+1)\sin kx.

    So,

    2S\cos x - 2S = - \sin (k+1)x +(k+1)\sin (k+1)x -(k+1)\sin kx,

    or, multiplying both sides by a negative sign,

    2S(1-\cos x)= \sin (k+1)x -(k+1)\sin (k+1)x +(k+1)\sin kx,

    4S\sin^{2}(x/2)=\sin (k+1)x -(k+1)(\sin (k+1)x  - \sin kx),

    =\sin(k+1)x-(k+1)2\cos((2k+1)(x/2))\sin (x/2).

    So, finally

    S = \frac{\sin(k+1)x}{4\sin^{2}(x/2)}-(k+1)\frac{\cos((2k+1)(x/2))}{2\sin(x/2)}.

    Hope there aren't any misprints !
    Thanks from Ragnarok
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Member
    Joined
    Apr 2010
    Posts
    116
    Thanks
    1

    Re: Tricky induction problem with trig

    Very interesting! I'm going to give it a week and then try this problem again, see if I remember anything.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. trig problem tricky
    Posted in the Trigonometry Forum
    Replies: 3
    Last Post: January 8th 2013, 07:21 PM
  2. Tricky trig sub integration
    Posted in the Calculus Forum
    Replies: 4
    Last Post: October 2nd 2010, 03:57 PM
  3. tricky trig equations
    Posted in the Trigonometry Forum
    Replies: 5
    Last Post: September 14th 2009, 03:13 AM
  4. Tricky induction proof
    Posted in the Number Theory Forum
    Replies: 1
    Last Post: February 17th 2009, 09:37 PM
  5. Tricky Induction
    Posted in the Discrete Math Forum
    Replies: 12
    Last Post: June 17th 2007, 01:07 PM

Search Tags


/mathhelpforum @mathhelpforum