Re: Algebraic Trigonometry

If you know your special triangles, you can convert angles to radians using the fact that $\displaystyle \displaystyle 360^{\circ} = 2\pi ^{C} \implies 1^{\circ} = \frac{\pi}{180}^{C}$.

Re: Algebraic Trigonometry

How would you do it using the unit circle?

Re: Algebraic Trigonometry

Once you know the first quadrant's angle $\displaystyle \displaystyle \begin{align*} \theta \end{align*}$, then the angle in Q2 is $\displaystyle \displaystyle \begin{align*} \pi - \theta \end{align*}$, the angle in Q3 is $\displaystyle \displaystyle \begin{align*} \pi + \theta \end{align*}$ and the angle in Q4 is $\displaystyle \displaystyle \begin{align*} 2\pi - \theta \end{align*}$.

Re: Algebraic Trigonometry