Results 1 to 5 of 5

Math Help - How to find Cos 75

  1. #1
    Junior Member
    Joined
    Sep 2007
    Posts
    55

    How to find Cos 75

    A question in my math sheet asks to find "Cos 75 "

    We're on the unit of Compound Angle Formulae too. I was just wondering is it simply pressing cos 75 on the calculator or do I have to apply anything else to it? Thanks!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member
    Joined
    Oct 2007
    Posts
    178
    That's one way.
    Or you can use the unit circle (if you don't know what that is search it on google).
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor
    Joined
    Apr 2005
    Posts
    1,631
    Pressing cos(75deg) on the calculator is the easiest way.

    But that's not the way you're asked to do. You are asked to do it using trigonometry.
    You are on compound angles formulae, so that is the way you are supposed to do.

    cos(75deg)
    = cos(30deg +45deg)
    = cos(30deg)cos(45deg) -sin(30deg)sin(45deg)
    = [(sqrt(3) /2)*(1 / sqrt(2))] -(1/2)(1 / sqrt(2))
    = [sqrt(3) / 2sqrt(2)] -[1 / 2sqrt(2)]
    = [sqrt(3) -1] / [2sqrt(2)]

    = [sqrt(6) -sqrt(2)] / 4
    = 0.258819045 -------------------answer.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Junior Member
    Joined
    Sep 2007
    Posts
    55
    Thank you SOOO MUCH!

    It makes sense now ^_^ You are all amazing!

    What would you do for

    Sin 15 since you can't split it into special angles?

    Also, how do you simplify this:

    sin (Θ + 30) + cos (Θ + 60)
    Follow Math Help Forum on Facebook and Google+

  5. #5
    MHF Contributor
    Joined
    Apr 2005
    Posts
    1,631
    Quote Originally Posted by finalfantasy View Post
    Thank you SOOO MUCH!

    It makes sense now ^_^ You are all amazing!

    What would you do for

    Sin 15 since you can't split it into special angles?

    Also, how do you simplify this:

    sin (Θ + 30) + cos (Θ + 60)
    sin(15deg) = sin(45deg -30deg)

    To simplify, spread them, simplify them.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 8
    Last Post: March 22nd 2011, 04:57 PM
  2. Replies: 2
    Last Post: July 5th 2010, 08:48 PM
  3. Replies: 1
    Last Post: February 17th 2010, 03:58 PM
  4. Replies: 0
    Last Post: June 16th 2009, 12:43 PM
  5. Replies: 2
    Last Post: April 6th 2009, 08:57 PM

Search Tags


/mathhelpforum @mathhelpforum