Exact Value for a Diagonal of a Square

So, I understand the formula to achieve the diagonal of a square is a variation of Pythagoras' Theorem, which is the square root of 2 times the length squared.

My exact side length is 2 + 2√3. So I input this length in the formula and I get an answer of 4√2, however, in the book the answer is 4√2+√3, with the √3 being under the first radical.

I cannot see how they are getting to this answer, any help would be fantastic.

Thanks in advance.

Re: Exact Value for a Diagonal of a Square

Quote:

Originally Posted by

**blinkin** So, I understand the formula to achieve the diagonal of a square is a variation of Pythagoras' Theorem, which is the square root of 2 times the length squared.

My exact side length is 2 + 2√3. So I input this length in the formula and I get an answer of 4√2, however, in the book the answer is 4√2+√3, with the √3 being under the first radical.

There are several mistakes in this post.

If $\displaystyle d$ is the length of the diagonal of a square of side length $\displaystyle s$ then $\displaystyle d=s\sqrt{2}$

So if you have $\displaystyle s=2+2\sqrt{3}$ then $\displaystyle d=2\sqrt{2}+2\sqrt{6}$.

Please make any necessary changes.

Re: Exact Value for a Diagonal of a Square

Hello and thanks for your reply!

I see that d=s√2 is a simplified version of the formula I wrote. Still, I'm looking at the answer in the book and it is what I wrote. I suppose it could be a typo but it was also written this way in the answer book at school. I've heard my teacher say that the book sometimes answers questions in a strange way... I guess I will have to wait until tomorrow and ask my teacher.

Thanks again.

Re: Exact Value for a Diagonal of a Square

Indeed, $\displaystyle 2\sqrt{2}+2\sqrt{6}=4\sqrt{2+\sqrt{3}}$, which you can verify by squaring both sides.

Re: Exact Value for a Diagonal of a Square

key concept 6^1/2 = 3^1/2 * 2^1/2

Re: Exact Value for a Diagonal of a Square

Blinkin is correct, as far as s/he goes, but 2sqrt(6) = 2sqrt(2*3), so we have then 2sqrt(2) + 2sqrt(2*3) = 2sqrt(2) + 2sqrt(2)*sqrt(3) = 2(2sqrt(2)) + sqrt(3) = 4sqrt(2) + sqrt(3).

Re: Exact Value for a Diagonal of a Square

It is of interest that in euclid's "elements", book i proposition i, if we allow the radius to equal 1 and duplicate the equilateral triangle vertically, we have the length ascertained of sqrt(3), which is the long hi to low opposite to opposite corner diagonal of a cube.

Re: Exact Value for a Diagonal of a Square

Quote:

Originally Posted by

**cathectio** 2sqrt(2) + 2sqrt(2*3) = 2sqrt(2) + 2sqrt(2)*sqrt(3) = 2(2sqrt(2)) + sqrt(3) = 4sqrt(2) + sqrt(3).

I'm not sure I understand this. Why does it become 2(2sqrt(2)) aren't we adding? And why is √3 still underneath the radical.