Results 1 to 3 of 3

Math Help - Simplify

  1. #1
    Member M670's Avatar
    Joined
    Sep 2012
    From
    Montreal
    Posts
    142

    Simplify

    Simplify the expression


    My final answer is \frac{2\sqrt{16-x^2}}{2x^2-16}but its telling me I am wrong


    \frac{2\tan(\alpha)}{1-\tan^2(\alpha)} this then works down eventually to my answer or is my frist step wrong?

    I found my mistake the answer is \frac{2x\sqrt{16-x^2}}{2x^2-16}
    Last edited by M670; November 24th 2012 at 07:37 AM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,738
    Thanks
    643

    Re: Simplify

    Hello, M670!

    You are missing an x.


    \text{Simplify: }\;\tan\left[2\cos^{-1}\left(\frac{x}{4}\right)\right]

    \text{Let }\theta = \cos^{-1}\left(\frac{x}{4}\right) \quad\Rightarrow\quad \cos\theta \:=\:\frac{x}{4} \:=\:\frac{adj}{hyp}

    \theta\text{ is in a right triangle with: }\,adj = x,\;hyp = 4

    \text{Pythagorus says: }\,opp = \sqrt{16-x^2}

    \text{Hence: }\:\tan\theta \:=\:\frac{opp}{adj} \:=\:\frac{\sqrt{16-x^2}}{x}

    \text{The problem becomes: }\:\tan2\theta \;=\;\dfrac{2\tan\theta}{1 - \tan^2\!\theta} \;=\;\dfrac{2\frac{\sqrt{16-x^2}}{x}}{1 - \frac{16-x^2}{x^2}}

    \text{Multiply by }\frac{x^2}{x^2}\!:\;\;\dfrac{2x\sqrt{16-x^2}}{2x^2-16} \;=\;\frac{x\sqrt{16-x^2}}{x^2-8}



    You found your error . . . Good!
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,548
    Thanks
    1418

    Re: Simplify

    Quote Originally Posted by M670 View Post
    Simplify the expression


    My final answer is \frac{2\sqrt{16-x^2}}{2x^2-16}but its telling me I am wrong


    \frac{2\tan(\alpha)}{1-\tan^2(\alpha)} this then works down eventually to my answer or is my frist step wrong?

    I found my mistake the answer is \frac{2x\sqrt{16-x^2}}{2x^2-16}
    First, I would write \displaystyle \begin{align*} \tan{(\theta)} = \frac{\sin{(\theta)}}{\cos{(\theta)}} = \frac{\sqrt{1 - \cos^2{(\theta)}}}{\cos{(\theta)}} \end{align*} (ignoring the plus/minus signs for the moment). Then that means

    \displaystyle \begin{align*} \tan{\left[ 2\arccos{\left( \frac{x}{4} \right)} \right]} &= \frac{\sqrt{1 - \cos^2{\left[ 2\arccos{\left( \frac{x}{4} \right)} \right]}}}{\cos{\left[ 2\arccos{\left(\frac{x}{4}\right)}\right]}} \end{align*}

    Then make use of \displaystyle \begin{align*} \cos{(2\theta)} = 2\cos^2{(\theta)} - 1  \end{align*} so that

    \displaystyle \begin{align*} \frac{\sqrt{1-\cos^2{\left[2\arccos{\left(\frac{x}{4}\right)}\right]}}}{\cos{\left[2\arccos{\left(\frac{x}{4}\right)}\right]}} &= \frac{\sqrt{1 - \left\{ 2\cos^2{\left[\arccos{\left(\frac{x}{4}\right)}\right]} - 1 \right\}^2}}{2\cos^2{\left[\arccos{\left(\frac{x}{4}\right)}\right]}-1} \\ &= \frac{\sqrt{1 - \left[ 2\left(\frac{x}{4}\right)^2 - 1 \right]^2}}{2\left(\frac{x}{4}\right)^2-1} \\ &= \frac{\sqrt{1 - \left[ 2\left( \frac{x^2}{16} \right) - 1 \right]^2}}{2\left( \frac{x^2}{16} \right) - 1} \\ &= \frac{\sqrt{1 - \left( \frac{x^2 - 8}{8} \right)^2}}{\frac{x^2 - 8}{8}} \\ &= \frac{8\sqrt{\frac{8^2 - \left( x^2 - 8 \right)^2}{8^2}}}{x^2 - 8} \\ &= \frac{\sqrt{8^2 - \left( x^2 - 8 \right)^2}}{x^2 - 8} \\ &= \frac{\sqrt{\left[ 8 - \left(x^2 - 8 \right) \right] \left[ 8 + \left( x^2 - 8 \right) \right] }}{x^2 - 8} \\ &= \frac{\sqrt{x^2 \left( 16 - x^2 \right) }}{x^2 - 8} \\ &= \frac{ x \sqrt{ 16 - x^2 } }{ x^2 - 8 } \end{align*}
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. How to simplify x^3 - y^3 / x - y
    Posted in the Algebra Forum
    Replies: 7
    Last Post: March 10th 2012, 10:19 PM
  2. Simplify
    Posted in the Algebra Forum
    Replies: 4
    Last Post: November 21st 2008, 10:11 AM
  3. simplify
    Posted in the Algebra Forum
    Replies: 1
    Last Post: September 20th 2008, 01:25 PM
  4. Simplify?
    Posted in the Algebra Forum
    Replies: 9
    Last Post: September 13th 2008, 08:12 PM
  5. need a help to simplify
    Posted in the Advanced Algebra Forum
    Replies: 3
    Last Post: September 12th 2008, 01:44 AM

/mathhelpforum @mathhelpforum