# Thread: Identity Proofs - Simple Question Help

1. ## Identity Proofs - Simple Question Help

Hi everyone!

I just have an identity proof that I am stuggling with.

Could anyone give me a hand?

Thanks!

2. ## Re: Identity Proofs - Simple Question Help

That's not an identity.

3. ## Re: Identity Proofs - Simple Question Help

No wonder it was so hard. Didn't even copy the question correctly haha. Thanks!

4. ## Re: Identity Proofs - Simple Question Help

Originally Posted by Higg
Hi everyone!

I just have an identity proof that I am stuggling with.

Could anyone give me a hand?

Thanks!
It's not an identity, and there are not even any real solutions for x.

\displaystyle \begin{align*} \tan^4{x} - \sec^4{x} &= 2\sin^2{x} \\ \left( \tan^2{x} - \sec^2{x} \right)\left( \tan^2{x} + \sec^2{x} \right) &= 2\sin^2{x} \\ -1\left( \tan^2{x} + \sec^2{x} \right) &= 2\sin^2{x} \\ -\left( \frac{\sin^2{x}}{\cos^2{x}} + \frac{1}{\cos^2{x}} \right) &= 2\sin^2{x} \\ -\left( \frac{\sin^2{x} + 1 }{\cos^2{x}} \right) &= 2\sin^2{x} \\ \frac{-\left( \sin^2{x} + 1 \right) }{1 - \sin^2{x}} &= 2\sin^2{x} \\ -\left( \sin^2{x} + 1 \right) &= 2\sin^2{x} \left( 1 - \sin^2{x} \right) \\ -\sin^2{x} - 1 &= 2\sin^2{x} - 2\sin^4{x} \\ 2\sin^4{x} - 3\sin^2{x} - 1 &= 0 \\ \sin^2{x} &= \frac{3 \pm \sqrt{(-3)^2 - 4(2)(-1)}}{2(2)} \\ \sin^2{x} &= \frac{3 \pm \sqrt{13}}{4} \\ \sin^2{x} &= \frac{3 + \sqrt{13}}{4} \textrm{ if we are assuming } x \textrm{ is real} \\ \sin{x} &= \pm \frac{\sqrt{{3 + \sqrt{13}} }}{2} \end{align*}

Since \displaystyle \begin{align*} \left| \frac{\sqrt{3 + \sqrt{13}}}{2} \right| > 1 \end{align*}, there are not any values of x which satisfy this equation.

Of course, complex numbers are another story...