I need help simplifying this trig expression. I started by trying to find a common denom. btwn the two fractions
@skeeter: Yes , but then I'm left w/ (cosxcotx(secx-tanx) + sinx(sexc + tanx). I tried putting all of tht in terms of sin & cos & eventually reached the point [(cos^2x(cosx-sinx)+ sin^2x(1+sinx)]/(sinxcosx)]
$\displaystyle \cos{x}\cot{x}(\sec{x}-\tan{x}) + \sin{x}(\sec{x}+\tan{x})$
$\displaystyle \cos{x}\cot{x}\sec{x} - \cos{x}\cot{x}\tan{x} + \sin{x}\sec{x} + \sin{x}\tan{x}$
$\displaystyle \cot{x} - \cos{x} + \tan{x} + \sin{x}\tan{x}$
$\displaystyle \cot{x}(1 - \sin{x}) + \tan{x}(1 + \sin{x})$
I don't think changing every term to sines and cosines will do much good from this point ... do you know what it is supposed to simplify to?