Results 1 to 5 of 5
Like Tree1Thanks
  • 1 Post By skeeter

Math Help - Trig

  1. #1
    Member srirahulan's Avatar
    Joined
    Apr 2012
    From
    Srilanka
    Posts
    171

    Trig

    a=2cosA+3sinA , b=3cosA+2sinA So give a relation between (a) and (b) without A.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,318
    Thanks
    1234

    Re: Trig

    \displaystyle \begin{align*} a &= 2\cos{A} + 3\sin{A} \\ b &= 3\cos{A} + 2\sin{A} \\ \\ 3a &= 6\cos{A} + 9\sin{A} \\ 2b &= 6\cos{A} + 4\sin{A} \\ \\ 3a - 2b &= 6\cos{A} + 9\sin{A} - \left(6\cos{A} + 4\sin{A}\right) \\ 3a - 2b &= 5\sin{A} \\ \frac{3}{5}a - \frac{2}{5}b &= \sin{A} \\ \left(\frac{3}{5}a - \frac{2}{5}b\right)^2 &= \sin^2{A} \\ \frac{9}{25}a^2 - \frac{12}{25}ab + \frac{4}{25}b^2 &= \sin^2{A} \\ \\ 2a &= 4\cos{A} + 6\sin{A} \\ 3b &= 9\cos{A} + 6\sin{A} \\ \\ 3b - 2a &= 9\cos{A} + 6\sin{A} - \left(4\cos{A} + 6\sin{A}\right) \\ 3b - 2a &= 5\cos{A} \\ \frac{3}{5}b - \frac{2}{5}a &= \cos{A} \\ \left(\frac{3}{5}b - \frac{2}{5}a\right)^2 &= \cos^2{A} \\ \frac{9}{25}b^2 - \frac{12}{25}ab + \frac{4}{25}a^2 &= \cos^2{A} \end{align*}

    \displaystyle \begin{align*} \frac{9}{25}a^2 - \frac{12}{25}ab + \frac{4}{25}b^2 + \frac{9}{25}b^2 - \frac{12}{25}ab + \frac{4}{25}a^2 &= \sin^2{A} + \cos^2{A} \\ \frac{13}{25}a^2 - \frac{24}{25}ab + \frac{13}{25}b^2 &= 1 \\ a^2 - \frac{24}{13}ab + b^2 &= \frac{25}{13} \\ a^2 - \frac{24}{13}ab + \left(-\frac{12}{13}b\right)^2 - \left(-\frac{12}{13}b\right)^2 + b^2 &= \frac{25}{13} \\ \left(a - \frac{12}{13}b\right)^2 - \frac{144}{169}b^2 + \frac{169}{169}b^2 &= \frac{325}{169} \\ \left(a - \frac{12}{13}b\right)^2 + \frac{25}{169}b^2 &= \frac{325}{169} \\ \left(a - \frac{12}{13}b\right)^2 &= \frac{325 - 25b^2}{169} \\ a - \frac{12}{13}b &= \frac{\pm \sqrt{325 - 25b^2}}{13} \\ a &= \frac{12b \pm \sqrt{325 - 25b^2}}{13}\end{align*}
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor
    skeeter's Avatar
    Joined
    Jun 2008
    From
    North Texas
    Posts
    11,621
    Thanks
    426

    Re: Trig

    Quote Originally Posted by srirahulan View Post
    a=2cosA+3sinA , b=3cosA+2sinA So give a relation between (a) and (b) without A.
    3a = 6\cos{A}+9\sin{A}
    -2b = -6\cos{A}-4\sin{A}
    -----------------------------------------
    3a-2b = 5\sin{A}

    \sin{A} = \frac{3a-2b}{5}


    3b = 9\cos{A}+6\sin{A}
    -2a=-4\cos{A}-6\sin{A}
    -----------------------------------------
    3b-2a = 5\cos{A}

    \cos{A} = \frac{3b-2a}{5}


    \sin^2{A} + \cos^2{A} = 1

    \left(\frac{3a-2b}{5}\right)^2 + \left(\frac{3b-2a}{5}\right)^2 = 1
    Thanks from srirahulan
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Senior Member
    Joined
    Mar 2012
    From
    Sheffield England
    Posts
    440
    Thanks
    76

    Re: Trig

    In terms of answering the question you had answered it as soon as you wrote a line without A in.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,318
    Thanks
    1234

    Re: Trig

    Quote Originally Posted by biffboy View Post
    In terms of answering the question you had answered it as soon as you wrote a line without A in.
    That is true, but I like to have one variable in terms of the other if possible. Just personal preference.

    The OP is welcome BTW ><
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Compute Trig Function Values, Solve Trig Equation
    Posted in the Trigonometry Forum
    Replies: 1
    Last Post: September 8th 2011, 07:00 PM
  2. Replies: 7
    Last Post: April 15th 2010, 08:12 PM
  3. Replies: 6
    Last Post: November 20th 2009, 04:27 PM
  4. Trig Equations with Multiple Trig Functions cont.
    Posted in the Trigonometry Forum
    Replies: 4
    Last Post: April 7th 2008, 05:50 PM
  5. Replies: 2
    Last Post: April 21st 2006, 03:04 PM

Search Tags


/mathhelpforum @mathhelpforum