Results 1 to 5 of 5

Math Help - principle angles and related acute angles

  1. #1
    Junior Member
    Joined
    Nov 2011
    Posts
    53

    principle angles and related acute angles

    how do you find them?
    examples:
    tan18
    sin205
    cos-55
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,547
    Thanks
    1418

    Re: principle angles and related acute angles

    Quote Originally Posted by ahmedb View Post
    how do you find them?
    examples:
    tan18
    sin205
    cos-55
    I'm assuming these are in degrees.

    \displaystyle \begin{align*} \sin{(5x)} &= 16\sin^5{(x)} - 20\sin^3{(x)} + 5\sin{(x)} \\ \sin{(5\cdot 18^{\circ})} &= 16\sin^5{(18^{\circ})} - 20\sin^3{(18^{\circ})} + 5\sin{(18^{\circ})} \\ 1 &= 16\sin^5{(18^{\circ})} - 20\sin^3{(18^{\circ})} + 5\sin{(18^{\circ})} \\ 0 &= 16\sin^5{(18^{\circ})} - 20\sin^3{(18^{\circ})} + 5\sin{(18^{\circ})} - 1 \\ 0 &= 16y^5 - 20y^3 + 5y - 1 \textrm{ if we let }y = \sin{(18^{\circ})} \\ 0 &= (y - 1)\left(4y^2 + 2y - 1\right)^2 \\ 0 &= 4y^2 + 2y - 1 \\ 0 &= y^2 + \frac{1}{2}y - \frac{1}{4} \\ 0 &= y^2 + \frac{1}{2}y + \left(\frac{1}{4}\right)^2 - \left(\frac{1}{4}\right)^2 - \frac{1}{4} \\ 0 &= \left( y + \frac{1}{4}\right)^2 - \frac{5}{16} \\ \frac{5}{16} &= \left(y + \frac{1}{4}\right)^2 \\ \pm \frac{\sqrt{5}}{4} &= y + \frac{1}{4} \\ \frac{-1 \pm \sqrt{5}}{4} &= y  \end{align*}

    With a little checking, you'll see that \displaystyle \begin{align*}  \sin{(18^{\circ})} = \frac{-1 + \sqrt{5}}{4} \end{align*} is the correct solution.

    Now use a similar method using

    \displaystyle \begin{align*} \cos{(5x)} = 16\cos^5{(x)} - 20\cos^3{(x)} + 5\cos{(x)} \end{align*} to get the value of \displaystyle \begin{align*} \cos{(18^{\circ})} \end{align*} .

    Then you can find \displaystyle \begin{align*} \tan{(18^{\circ})} \end{align*} using \displaystyle \begin{align*} \tan{\theta} = \frac{\sin{\theta}}{\cos{\theta}} \end{align*} .
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Nov 2011
    Posts
    53

    Re: principle angles and related acute angles

    what i mean is like quadrant 1, 2, 3, and 4.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Member sbhatnagar's Avatar
    Joined
    Sep 2011
    From
    New Delhi, India
    Posts
    200
    Thanks
    17

    Re: principle angles and related acute angles

    Here's a little easier method:

    \begin{align*} x &= 18^{\circ} \\ 5x &= 90^{\circ} \\ 2x+ 3x &= 90^{\circ} \\ 2x &= 90^{\circ} -3x \\ \sin(2x)&= \sin(90^{\circ}-3x) \\  \sin(2x) &= \cos(3x) \\ 2\sin(x)\cos(x) &= \cos^3(x)-3\sin^2(x)\cos(x) \\ 2\sin(x) &= \cos^2(x)-3\sin^2(x) \\ 2\sin(x)  &= 1-\sin^2(x)-3\sin^2(x) \\ 4\sin^2(x)+2\sin(x)-1 &= 0 \\ \sin(x) &= \frac{-1 \pm \sqrt{5}}{4} \quad [\text{Quadratic Formula}]  \\ \sin(18^{\circ}) &= \frac{-1 + \sqrt{5}}{4} \end{align*}


    \sin(205 ^{\circ})=-\sin(25 ^{\circ} )

    \cos(-55 ^{\circ}) = \cos(55 ^{\circ})

    Unfortunately, \sin(25 ^{\circ} ) and \cos(55 ^{\circ}) have no exact values.
    Last edited by sbhatnagar; December 19th 2011 at 05:26 AM.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    MHF Contributor
    skeeter's Avatar
    Joined
    Jun 2008
    From
    North Texas
    Posts
    11,686
    Thanks
    446

    Re: principle angles and related acute angles

    Quote Originally Posted by ahmedb View Post
    what i mean is like quadrant 1, 2, 3, and 4.
    ... are you asking about reference angles?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Related Rates - Angles
    Posted in the Calculus Forum
    Replies: 3
    Last Post: July 5th 2011, 08:01 AM
  2. Trigonometric Functions of Non-Acute Angles
    Posted in the Trigonometry Forum
    Replies: 1
    Last Post: September 14th 2009, 05:20 PM
  3. Replies: 1
    Last Post: July 21st 2009, 09:12 PM
  4. Replies: 2
    Last Post: March 20th 2009, 09:21 AM
  5. Need help with Principle angles
    Posted in the Trigonometry Forum
    Replies: 3
    Last Post: July 20th 2007, 04:00 AM

Search Tags


/mathhelpforum @mathhelpforum