Results 1 to 2 of 2

Math Help - Solution of triangles.

  1. #1
    Newbie
    Joined
    Nov 2011
    Posts
    2

    Solution of triangles.

    Prove That
    (Sin^3 A).(Sin(B-C)) + (Sin^3 B).(Sin(C-A)) + (Sin^3 C).(Sin(A-B)) = 0
    Last edited by mr fantastic; November 26th 2011 at 02:14 AM. Reason: Title.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member sbhatnagar's Avatar
    Joined
    Sep 2011
    From
    New Delhi, India
    Posts
    200
    Thanks
    17

    Lightbulb Re: Solution of triangles.

    Prove \sin^3{A}\sin(B-C)+\sin^3{B}\sin(C-A)+\sin^3{C}\sin(A-B)=0
    Assuming that A,B \hspace{3} \text{and}\hspace{3} C are angles of a triangle:

    A+B+C=180^{\circ}

    This means:

    A=180^{\circ}-(B+C) \iff \sin{A}=\sin{(B+C)}
    B=180^{\circ}-(A+C) \iff \sin{B}=\sin{(A+C)}
    C=180^{\circ}-(A+B) \iff \sin{C}=\sin{(B+A)}

    Also:

    \begin{align*}\sin^3{C}\sin(A-B)&= \sin^2{C}[\sin(A-B)\sin(A+B)] \\ &=\sin^2{C}[\frac{1}{2}(\cos{2B}-\cos{2A})] \\ &= \sin^2{C}[\frac{1}{2}(\cos^2{B}-\sin^2{B}-\cos^2{A}+\sin^2{A})] \\ &= \sin^2{C}[\sin^2{A}-\sin^2{B}] \\ &= \sin^2{C}\sin^2{A}-\sin^2{C}\sin^2{B} \end{align*}
    __________________________________________________ __

    \begin{align*}\sin^3{B}\sin(C-A)&= \sin^2{B}[\sin(C-A)\sin(A+C)] \\ &=\sin^2{B}[\frac{1}{2}(\cos{2A}-\cos{2C})]  \\ &= \sin^2{B}[\frac{1}{2}(\cos^2{A}-\sin^2{A}-\cos^2{C}+\sin^2{C})] \\ &= \sin^2{B}[-\sin^2{A}+\sin^2{C}] \\ &= -\sin^2{B}\sin^2{A}+\sin^2{B}\sin^2{C} \end{align*}

    __________________________________________________ __

    \begin{align*}\sin^3{A}\sin(B-C)&= \sin^2{A}[\sin(B-C)\sin(B+C)] \\ &=\sin^2{A}[\frac{1}{2}(\cos{2C}-\cos{2B})]  \\ &= \sin^2{A}[\frac{1}{2}(\cos^2{C}-\sin^2{C}-\cos^2{B}+\sin^2{B})] \\ &= \sin^2{A}[\sin^2{B}-\sin^2{C}] \\ &= \sin^2{A}\sin^2{B}-\sin^2{A}\sin^2{C} \end{align*}

    So:

    \\ \sin^3{A}\sin(B-C)+\sin^3{B}\sin(C-A)+\sin^3{C}\sin(A-B)  \\ ={ \color{red} \sin^2{C}\sin^2{A} }{\color{blue} -\sin^2{C}\sin^2{B}}{\color{green} +\sin^2{A}\sin^2{B}}{\color{red} -\sin^2{A}\sin^2{C}}{\color{green} -\sin^2{B}\sin^2{A}}{\color{blue}+ \sin^2{B}\sin^2{C}} \\ =0

    I guess there's a much easier way.
    Last edited by sbhatnagar; November 26th 2011 at 10:52 PM.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Solution of triangles ambiguous case.
    Posted in the Trigonometry Forum
    Replies: 0
    Last Post: December 3rd 2011, 07:55 PM
  2. Replies: 3
    Last Post: March 19th 2011, 05:42 AM
  3. Solution of Oblique Triangles Help
    Posted in the Trigonometry Forum
    Replies: 3
    Last Post: September 7th 2010, 06:39 PM
  4. Solution of triangles problem
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: October 25th 2009, 06:47 AM
  5. Solution of triangles
    Posted in the Calculus Forum
    Replies: 1
    Last Post: October 18th 2009, 09:13 AM

Search Tags


/mathhelpforum @mathhelpforum