# Periodicity of functions

• Oct 23rd 2011, 10:47 AM
Fabio010
Periodicity of functions
Can somebody tell me how can i find the periodicity of:

$sen^2(x)$ and $sen\sqrt{x}$

I know that i have to equal $f(x)$ to $f(x+p)$ but i cant solve it.

Help is always appreciated :).
• Oct 23rd 2011, 11:11 AM
SammyS
Re: Periodicity of functions
Quote:

Originally Posted by Fabio010
Can somebody tell me how can i find the periodicity of:

$sen^2(x)$ and $sen\sqrt{x}$

I know that i have to equal $f(x)$ to $f(x+p)$ but i cant solve it.

Help is always appreciated :).

I assume that sen(x) is what most of us refer to as sin(x) .

Sketch a graph of each function.

Use one of the double angle identities for the cosine to find a way to express $\sin^2(x)$ in terms of cos(2x) .
• Oct 23rd 2011, 12:55 PM
Fabio010
Re: Periodicity of functions
...
• Oct 23rd 2011, 12:59 PM
Fabio010
Re: Periodicity of functions
Quote:

Originally Posted by SammyS
I assume that sen(x) is what most of us refer to as sin(x) .

Sketch a graph of each function.

Use one of the double angle identities for the cosine to find a way to express $\sin^2(x)$ in terms of cos(2x) .

I never noticed that

$sin^2(x) = \frac{1-cos(2x)}{2}$

$\frac{1-cos(2x+2P)}{2} = \frac{1-cos(2x)}{2}$

$cos(2x+2P) = cos(2x)$ k belongs to Z

$2x + 2P = 2x + 2k\pi~~\cup~~2x + 2P = -2x + 2k\pi$

$P = k\pi~~\cup~~P= -2x +k\pi$

So $P= \pi~~~right??$

The other function, is not periodic, because we can see in graphic. But how can i prove that is not periodic??
• Oct 23rd 2011, 01:22 PM
SammyS
Re: Periodicity of functions
Correct. The period is π .