1. Calculate the length $\displaystyle |\overline{PQ}|\approx 831$
2. Calculate all interior angles of the triangle OPQ:
$\displaystyle \angle(POQ) = 6.9105^\circ$
$\displaystyle \angle(QPO) = 21.4895^\circ$
$\displaystyle \angle(PQO) = 151.6^\circ$
3. Use the Sine rule to calculate the length of x:
$\displaystyle \dfrac x{831}=\dfrac{\sin(21.4893)}{\sin(151.6)}~\implies ~x \approx 640$
4. The coordinates of Q are $\displaystyle Q\left(x \cdot \cos(36.87^\circ)\ ,\ x \cdot \sin(36.87^\circ) \right)$