Find the argument of z for each of the following in the interval [0,2pi]
i) Z=5-5i
ii) Z=55
iii) Z=-4+8i
i know first off all you plot it on the complex number plane, to find out the quadrant its in. say for i) its quadrant 4. and now im confused what you do next please help.
I think that the easiest way to do this is to plot the complex number in the plane and then form a right triangle by actually drawing the path as you plot the point (for example for 5-5i, you move right 5 then down 5 from the origin - actually draw this path), and then drawing a straight line segment from the origin to the point (for the hypotenuse). Then label all 3 sides (in the previous example, the sides would be 5, 5 and - no need to worry about negative signs since the picture already shows you what quadrant you're in).
Make sure you know the 30,60,90 and 45,45,90 triangles by heart.
To find a value of arg z, just use the picture and sin, cos or tan to get the reference angle, and then use the quadrant you're in to find a value of arg z.
Note that arg z takes on infinitely many values. If you want the principle argument (which I write Arg z), you may need to add or subtract to get a value between and .